Skip to main content
Log in

Study of supersolidity in the two-dimensional Hubbard–Holstein model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We derive an effective Hamiltonian for the two-dimensional Hubbard–Holstein model in the regimes of strong electron–electron and strong electron–phonon interactions by using a nonperturbative approach. In the parameter region where the system manifests the existence of a correlated singlet phase, the effective Hamiltonian transforms to a t1V 1V 2V 3 Hamiltonian for hard-core-bosons on a checkerboard lattice. We employ quantum Monte Carlo simulations, involving stochastic-series-expansion technique, to obtain the ground state phase diagram. At filling 1∕8, as the strength of off-site repulsion increases, the system undergoes a first-order transition from a superfluid to a diagonal striped solid with ordering wavevector \(\vec{Q}\) = (π∕4, 3π∕4) or (π∕4, 5π∕4). Unlike the one-dimensional situation, our results in the two-dimensional case reveal a supersolid phase (corresponding to the diagonal striped solid) around filling 1∕8 and at large off-site repulsions. Furthermore, for small off-site repulsions, we witness a valence bond solid at one-fourth filling and tiny phase-separated regions at slightly higher fillings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Gabovich, A.I. Voitenko, M. Ausloos, Phys. Rep. 367, 583 (2002)

    Article  ADS  Google Scholar 

  2. S.H. Blanton, R.T. Collins, K.H. Kelleher, L.D. Rotter, Z. Schlesinger, D.G. Hinks, Y. Zheng, Phys. Rev. B 47, 996 (1993)

    Article  ADS  Google Scholar 

  3. R.L. Withers, J.A. Wilson, J. Phys. C 19, 4809 (1986)

    Article  ADS  Google Scholar 

  4. J. Merino, R.H. McKenzie, Phys. Rev. Lett. 87, 237002 (2001)

    Article  ADS  Google Scholar 

  5. W.W. Fuller, P.M. Chaikin, N.P. Ong, Phys. Rev. B 24, 1333 (1981)

    Article  ADS  Google Scholar 

  6. A. Rusydi, W. Ku, B. Schulz, R. Rauer, I. Mahns, D. Qi, X. Gao, A.T.S. Wee, P. Abbamonte, H. Eisaki, Y. Fujimaki, S. Uchida, M. Rübhausen, Phys. Rev. Lett. 105, 026402 (2010)

    Article  ADS  Google Scholar 

  7. P. Abbamonte, G. Blumberg, A. Rusydi, A. Gozar, P.G. Evans, T. Siegrist, L. Venema, H. Eisaki, E.D. Isaacs, G.A. Sawatzky, Nature 431, 1078 (2004)

    Article  ADS  Google Scholar 

  8. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  9. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  10. C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Science 291, 2386 (2001)

    Article  ADS  Google Scholar 

  11. M. Greiner, O. Mandel, T. Rom, A. Altmeyer, A. Widera, T.W. Hnsch, I. Bloch, Nature (London) 415, 39 (2002)

    Article  ADS  Google Scholar 

  12. L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  13. G.G. Batrouni, R.T. Scalettar, Phys. Rev. Lett. 84, 1599 (2000)

    Article  ADS  Google Scholar 

  14. F. Hébert, G.G. Batrouni, R.T. Scalettar, G. Schmid, M. Troyer, A. Dorneich, Phys. Rev. B 65, 014513 (2001)

    Article  ADS  Google Scholar 

  15. L. Dang, M. Boninsegni, L. Pollet, Phys. Rev. B 78, 132512 (2008)

    Article  ADS  Google Scholar 

  16. B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, G. Pupillo, Phys. Rev. Lett. 104, 125301 (2010)

    Article  ADS  Google Scholar 

  17. Y.-C. Chen, R.G. Melko, S. Wessel, Y.-J. Kao, Phys. Rev. B 77, 014524 (2008)

    Article  ADS  Google Scholar 

  18. P. Sengupta, L.P. Pryadko, F. Alet, M. Troyer, G. Schmid, Phys. Rev. Lett. 94, 207202 (2005)

    Article  ADS  Google Scholar 

  19. G. Schmid, M. Troyer, Phys. Rev. Lett. 93, 067003 (2004)

    Article  ADS  Google Scholar 

  20. S. Kar, S. Yarlagadda, Ann. Phys. 375, 322 (2016)

    Article  ADS  Google Scholar 

  21. S. Datta, S. Yarlagadda, Solid State Commun. 150, 2040 (2010)

    Article  ADS  Google Scholar 

  22. X. Huo, Y.-Y. Cui, D. Wang, J.-P. Lv, Phys. Rev. A 95, 023613 (2017)

    Article  ADS  Google Scholar 

  23. S. Wessel, M. Troyer, Phys. Rev. Lett. 95, 127205 (2005)

    Article  ADS  Google Scholar 

  24. D. Heidarian, K. Damle, Phys. Rev. Lett. 95, 127206 (2005)

    Article  ADS  Google Scholar 

  25. A. Sen, P. Dutt, K. Damle, R. Moessner, Phys. Rev. Lett. 100, 147204 (2008)

    Article  ADS  Google Scholar 

  26. R.G. Melko, A. Paramekanti, A.A. Burkov, A. Vishwanath, D.N. Sheng, L. Balents, Phys. Rev. Lett. 95, 127207 (2005)

    Article  ADS  Google Scholar 

  27. M. Boninsegni, N. Prokof’ev, Phys. Rev. Lett. 95, 237204 (2005)

    Article  ADS  Google Scholar 

  28. R.G. Melko, A. Del Maestro, A.A. Burkov, Phys. Rev. B 74, 214517 (2006)

    Article  ADS  Google Scholar 

  29. L. Pollet, J.D. Picon, H.P. Büchler, M. Troyer, Phys. Rev. Lett. 104, 125302 (2010)

    Article  ADS  Google Scholar 

  30. S. Wessel, Phys. Rev. B 75, 174301 (2007)

    Article  ADS  Google Scholar 

  31. J.Y. Gan, Y.C. Wen, J. Ye, T. Li, S.-J. Yang, Y. Yu, Phys. Rev. B 75, 214509 (2007)

    Article  ADS  Google Scholar 

  32. T. Mishra, R.V. Pai, S. Mukerjee, Phys. Rev. A 89, 013615 (2014)

    Article  ADS  Google Scholar 

  33. A. Ghosh, S. Yarlagadda, Phys. Rev. B 90, 045140 (2014)

    Article  ADS  Google Scholar 

  34. T. Bilitewski, N.R. Cooper, Phys. Rev. A 94, 023630 (2016)

    Article  ADS  Google Scholar 

  35. R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, T. Esslinger, Nature (London) 532, 476 (2016)

    Article  ADS  Google Scholar 

  36. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, Z.X. Shen, Nature (London) 412, 510 (2001)

    Article  ADS  Google Scholar 

  37. G.-H. Gweon, T. Sasagawa, S.Y. Zhou, J. Graf, H. Takagi, D.-H. Lee, A. Lanzara, Nature (London) 430, 187 (2004)

    Article  ADS  Google Scholar 

  38. A. Lanzara, N.L. Saini, M. Brunelli, F. Natali, A. Bianconi, P.G. Radaelli, S.-W. Cheong, Phys. Rev. Lett. 81, 878 (1998)

    Article  ADS  Google Scholar 

  39. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  40. F. Massee, S. de Jong, Y. Huang, W.K. Siu, I. Santoso, A. Mans, A.T. Boothroyd, D. Prabhakaran, R. Follath, A. Varykhalov, L. Patthey, M. Shi, J.B. Goedkoop, M.S. Golden, Nat. Phys. 7, 978 (2011)

    Article  Google Scholar 

  41. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997)

    Article  ADS  Google Scholar 

  42. E. Berger, P. Valášek, W. von der Linden, Phys. Rev. B 52, 4806 (1995)

    Article  ADS  Google Scholar 

  43. J.E. Hirsch, E. Fradkin, Phys. Rev. B 27, 4302 (1983)

    Article  ADS  Google Scholar 

  44. J.E. Hirsch, Phys. Rev. B 31, 6022 (1985)

    Article  ADS  Google Scholar 

  45. Z.B. Huang, W. Hanke, E. Arrigoni, D.J. Scalapino, Phys. Rev. B 68, 220507(R) (2003)

    Article  ADS  Google Scholar 

  46. R.P. Hardikar, R.T. Clay, Phys. Rev. B 75, 245103 (2007)

    Article  ADS  Google Scholar 

  47. A. Macridin, G.A. Sawatzky, M. Jarrell, Phys. Rev. B 69, 245111 (2004)

    Article  ADS  Google Scholar 

  48. A. Dobry, A. Greco, J. Lorenzana, J. Riera, Phys. Rev. B 49, 505 (1994)

    Article  ADS  Google Scholar 

  49. A. Dobry, A. Greco, J. Lorenzana, J. Riera, H.T. Diep, Europhys. Lett. 27, 617 (1994)

    Article  ADS  Google Scholar 

  50. B. Bäuml, G. Wellein, H. Fehske, Phys. Rev. B 58, 3663 (1998)

    Article  ADS  Google Scholar 

  51. M. Tezuka, R. Arita, H. Aoki, Phys. Rev. B 76, 155114 (2007)

    Article  ADS  Google Scholar 

  52. S. Sota, T. Tohyama, Phys. Rev. B 82, 195130 (2010)

    Article  ADS  Google Scholar 

  53. J.K. Freericks, M. Jarrell, Phys. Rev. Lett. 75, 2570 (1995)

    Article  ADS  Google Scholar 

  54. M. Capone, G. Sangiovanni, C. Castellani, C. Di Castro, M. Grilli, Phys. Rev. Lett. 92, 106401 (2004)

    Article  ADS  Google Scholar 

  55. W. Koller, D. Meyer, Y. Ono, A.C. Hewson, Europhys. Lett. 66, 559 (2004)

    Article  ADS  Google Scholar 

  56. W. Koller, D. Meyer, A.C. Hewson, Phys. Rev. B 70, 155103 (2004)

    Article  ADS  Google Scholar 

  57. G.S. Jeon, T.-H. Park, J.H. Han, H.C. Lee, H.-Y. Choi, Phys. Rev. B 70, 125114 (2004)

    Article  ADS  Google Scholar 

  58. G. Sangiovanni, M. Capone, C. Castellani, M. Grilli, Phys. Rev. Lett. 94, 026401 (2005)

    Article  ADS  Google Scholar 

  59. G. Sangiovanni, M. Capone, C. Castellani, Phys. Rev. B 73, 165123 (2006)

    Article  ADS  Google Scholar 

  60. J. Bauer, A.C. Hewson, Phys. Rev. B 81, 235113 (2010)

    Article  ADS  Google Scholar 

  61. J. Bauer, G. Sangiovanni, Phys. Rev. B 82, 184535 (2010)

    Article  ADS  Google Scholar 

  62. M. Grilli, C. Castellani, Phys. Rev. B 50, 16880 (1994)

    Article  ADS  Google Scholar 

  63. J. Keller, C.E. Leal, F. Forsthofer, Physica B 206–207, 739 (1995)

    Article  ADS  Google Scholar 

  64. E. Koch, R. Zeyher, Phys. Rev. B 70, 094510 (2004)

    Article  ADS  Google Scholar 

  65. U. Trapper, H. Fehske, M. Deeg, H. Buttner, Z. Phys. B 93, 465 (1994)

    Article  ADS  Google Scholar 

  66. C.A. Perroni, V. Cataudella, G. De Filippis, V. Marigliano Ramaglia, Phys. Rev. B 71, 113107 (2005)

    Article  ADS  Google Scholar 

  67. Y. Takada, A. Chatterjee, Phys. Rev. B 67, 081102 (2003)

    Article  ADS  Google Scholar 

  68. H. Fehske, D. Ihle, J. Loos, U. Trapper, H. Buttner, Z. Phys. B 94, 91 (1994)

    Article  ADS  Google Scholar 

  69. R. Zeyher, M.L. Kulić, Phys. Rev. B 53, 2850 (1996)

    Article  ADS  Google Scholar 

  70. A. Di Ciolo, J. Lorenzana, M. Grilli, G. Seibold, Phys. Rev. B 79, 085101 (2009)

    Article  ADS  Google Scholar 

  71. P. Barone, R. Raimondi, M. Capone, C. Castellani, M. Fabrizio, Phys. Rev. B 77, 235115 (2008)

    Article  ADS  Google Scholar 

  72. A. Payeur, D. Sénéchal, Phys. Rev. B 83, 033104 (2011)

    Article  ADS  Google Scholar 

  73. A half-filled Hubbard–Holstein model on a two-dimensional square lattice, where the Coulomb interaction was treated in terms of static-auxiliary fields and the phonons were considered in the adiabatic limit, was studied in S. Pradhan, G.V. Pai, Phys. Rev. B 92, 165124 (2015)

    Article  ADS  Google Scholar 

  74. For a lucid treatment of the electronic interaction using static-auxiliary fields and the phonons using the adiabatic limit, see R. Tiwari, P. Majumdar, Europhys. Lett. 108, 27007 (2014) and reference [75]

    Article  ADS  Google Scholar 

  75. S. Kumar, P. Majumdar, Eur. Phys. J. B 50, 571 (2006)

    Article  ADS  Google Scholar 

  76. S. Reja, S. Yarlagadda, P.B. Littlewood, Phys. Rev. B 84, 085127 (2011)

    Article  ADS  Google Scholar 

  77. S. Reja, S. Yarlagadda, P.B. Littlewood, Phys. Rev. B 86, 045116 (2012)

    Article  ADS  Google Scholar 

  78. T. Barnes, E.S. Swanson, Phys. Rev. B 37, 9405 (1988)

    Article  ADS  Google Scholar 

  79. A.W. Sandvik, Phys. Rev. B 56, 11678 (1997)

    Article  ADS  Google Scholar 

  80. A.W. Sandvik, AIP Conf. Proc. 1297, 135 (2010)

    Google Scholar 

  81. O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002)

    Article  ADS  Google Scholar 

  82. O.F. Syljuåsen, Phys. Rev. E 67, 046701 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  83. G.G. Batrouni, R.T. Scalettar, G.T. Zimanyi, A.P. Kampf, Phys. Rev. Lett. 74, 2527 (1995)

    Article  ADS  Google Scholar 

  84. A. Ghosh, S. Yarlagadda, Phys. Rev. B 96, 125108 (2017)

    Article  ADS  Google Scholar 

  85. I. Bose, Curr. Sci. 88, 62 (2005)

    Google Scholar 

  86. A. Sen, K. Damle, T. Senthil, Phys. Rev. B 76, 235107 (2007)

    Article  ADS  Google Scholar 

  87. S. Wessel, Phys. Rev. B 78, 075112 (2008)

    Article  ADS  Google Scholar 

  88. S. Wessel, Phys. Rev. B 86, 140501(R) (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Yarlagadda.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Kar, S. & Yarlagadda, S. Study of supersolidity in the two-dimensional Hubbard–Holstein model. Eur. Phys. J. B 91, 205 (2018). https://doi.org/10.1140/epjb/e2018-90350-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90350-y

Navigation