1 Introduction

Although interacting Fermi gases have been studied extensively from the beginning of quantum mechanics, their rigorous understanding remains one of the major issues of condensed matter physics. From first principles, a system of N fermions in \({\mathbb {R}}^{3}\) can be described by a Schrödinger equation in \({\mathbb {R}}^{3N}\), subject to the anti-symmetry condition between the variables due to Pauli’s exclusion principle. However, this fundamental theory becomes very complex when \(N\rightarrow \infty \), leading to the need of various approximations. Justifying these approximations is an important task of mathematical physics.

One of the most basic approximations for fermions is the Hartree–Fock (HF) theory. In HF theory, the particles are assumed to be independent, namely the HF energy is computed by restricting the consideration to Slater determinants. In spite of its simplicity, the HF theory is used very successfully in computational physics and chemistry to compute the ground state energy of atoms and molecules. The accuracy of the HF energy (in comparison to the full quantum energy) for large Coulomb systems was investigated in the 1990 s by Fefferman and Seco [12], Bach [1], and Graf and Solovej [15].

On the other hand, for the electron gas (e.g. jellium, a homogeneous electron gas moving in a background of uniform positive charge), the HF theory is essentially trivial in the high density limit since the HF energy only contains an exponentially small correction to the energy of the Fermi state, the ground state of the non-interacting gas [14]. Therefore, computing the correlation energy,Footnote 1 namely the correction to the HF energy, is a crucial task to understand the effect of the interaction. It was already noticed by Wigner in 1934 [23] and confirmed by Heisenberg in 1947 [17] that it would be very challenging to accomplish this task within perturbation theory due to the long-range property of the Coulomb potential. Nevertheless, a remarkable attempt in this direction was done by Macke in 1950 [18] when he used a partial resummation of the divergent series to predict the leading order contribution \(c_{1}\rho \log \left( \rho \right) \) of the correlation energy (with density \(\rho \rightarrow \infty \)).

A cornerstone in the correlation analysis of the electron gas is the random phase approximation (RPA) which was proposed by Bohm and Pines in the 1950 s [7,8,9, 19]. As an important consequence of the Bohm-Pines RPA theory, the electron gas could be decoupled into collective plasmon excitations and quasi-electrons that interacted via a screened Coulomb interaction. The latter fact justified the independent particle approach commonly used for many-body fermion systems. The justification of the RPA was a major question in condensed matter and nuclear physics in the late 1950 s and 1960 s. An important justification was given by Gell-Mann and Brueckner in 1957 [13] when they formally derived the RPA from a resummation of Feynman diagrams where each term separately diverges but the sum is convergent. More precisely, by considering the diagrams corresponding to the interaction of pairs of fermions, one from inside and one from outside the Fermi state, Gell-Mann and Brueckner were able to produce the leading order contribution \(c_{1}\rho \log \left( \rho \right) +c_{2}\rho \) of the correlation energy.

Soon after the achievement of Gell-Mann and Brueckner, Sawada [21] and Sawada–Brueckner–Fukuda–Brout [22] proposed an alternative approach to the RPA where the pairs of electrons are interpreted as bosons, leading to an effective Hamiltonian which is quadratic in terms of the bosonic creation and annihilation operators. Note that within the purely bosonic picture, quadratic Hamiltonians can be diagonalized by Bogolubov transformations [6], and hence their spectra can be computed explicitly. Therefore, the Hamiltonian approach in [21, 22] is conceptually more transparent than the resummation method in [13]. Unfortunately the analysis in [21, 22] only gives the contribution \(c_{1}\rho \log \left( \rho \right) \) of the correlation energy because the exchange contribution of order \(\rho \) is missed in the purely bosonic picture.

Recently, the bosonization argument in [21, 22] has been revisited and made rigorous in the mean-field regime with smooth interaction potentials [2,3,4,5, 10, 11, 16]. In principle, if the interaction is sufficiently weak, then the non-bosonizable terms of the interaction energy are negligible, and the quasi-bosonic Hamiltonian can be analyzed with great precision. In particular, the correlation energy has been successfully computed to the leading order [2, 3, 5, 10]. However, the boundedness of interaction potentials is crucial for all of these works, and extending the analysis to the electron gas remains a very interesting open question.

In the present paper, we will give the first rigorous upper bound to the correlation energy of the electron gas in the mean-field regime. Our bound is consistent with the Gell-Mann–Brueckner formula \(c_{1}\rho \log \left( \rho \right) +c_{2}\rho \) for jellium in the high density limit [13]. Although our trial state argument is inspired by the bosonization method in [21, 22], we are able to capture correctly the exchange contribution by carefully distinguishing the purely bosonic picture and the quasi-bosonic one. On the mathematical side, we will use the general method in our recent work [10], but several new estimates are needed to deal with the singularity of the potential. The matching lower bound in the mean-field regime, as well as the corresponding result in the thermodynamic limit, remain open, and we hope to be able to come back to these issues in the future.

On the technical side, the key idea of [10] is that while the bosonic property of fermionic pairs holds only in an average sense, this weak bosonic property is sufficient to extract correctly the correlation energy by implementing a quasi-bosonic Bogolubov transformation. The main contribution of the present paper is to show that this approach is also sufficient to extract the exchange correction to the purely bosonic computation. On the other hand, another bosonization method has been proposed in [2], where the bosonic property of fermionic pairs is strengthened by using suitable patches on the Fermi sphere for the quasi-bosonic creation and annihilation operators, making the comparison with the purely bosonic computation significantly easier. In fact, as explained in [5], the approach in [2] can be extended to give the leading order of the correlation energy upper bound for potentials satisfying \(\sum V_k^2|k| < \infty \). Although this condition only barely fails for the Coulomb potential, there is a huge difference to the Coulomb case. While for \(\sum V_k^2|k| < \infty \) the bosonic correlation contribution is of order \(k_F\) and the exchange correlation is of lower order \(o(k_F)\), for the Coulomb potential the exchange contribution raises to the order \(k_F\), whereas the bosonic correlation behaves as \(k_F \log (k_F)\), which makes the Coulomb case much more challenging (here \(k_F\) is the radius of the Fermi ball). In particular, the method in [2, 5] does not seem to capture the exchange contribution which is indeed important for the Coulomb potential.

1.1 Main result

Let \({\mathbb {T}}^{3}=\left[ 0,2\pi \right] ^{3}\) with periodic boundary conditions. Let \(V:{\mathbb {T}}^{3}\rightarrow {\mathbb {R}}\) be defined by

$$\begin{aligned} V\left( x\right) =\frac{1}{\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}e^{ik\cdot x},\quad {\mathbb {Z}}_{*}^{3}={\mathbb {Z}}^{3}\backslash \left\{ 0\right\} , \end{aligned}$$
(1.1)

with Fourier coefficients satisfying

$$\begin{aligned} {\hat{V}}_{k}\ge 0,\quad {\hat{V}}_{k}={\hat{V}}_{-k},\quad \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty . \end{aligned}$$
(1.2)

We implicitly assume that \({\hat{V}}_{0}=0\), or equivalently that the “background” has been subtracted.

For \(k_{F}>0\), let \(N=\left| B_{F}\right| \) be the number of integer points in the Fermi ball \(B_{F}={\overline{B}}\left( 0,k_{F}\right) \cap {\mathbb {Z}}^{3}\) and consider the mean-field Hamiltonian

$$\begin{aligned} H_{N}=-\sum _{i=1}^{N}\Delta _{i}+k_{F}^{-1}\sum _{1\le i<j\le N}V\left( x_{i}-x_{j}\right) \end{aligned}$$
(1.3)

on the fermionic space \({\mathcal {H}}_{N}=\bigwedge ^{N}{\mathfrak {h}}\) with \({\mathfrak {h}}=L^{2}\left( {\mathbb {T}}^{3}\right) \).Footnote 2 The leading order of the ground state energy of \(H_{N}\) is given by the Fermi state

$$\begin{aligned} \psi _{\textrm{FS}}=\bigwedge _{p\in B_{F}}u_{p},\quad u_{p}\left( x\right) =\left( 2\pi \right) ^{-\frac{3}{2}}e^{ip\cdot x}. \end{aligned}$$
(1.4)

It is straightforward to find (see e.g. [10, Eqs. (1.10) and (1.20)])

$$\begin{aligned} E_{\textrm{FS}}=\left\langle \psi _{\textrm{FS}},H_{N}\psi _{\textrm{FS}}\right\rangle = \sum _{p\in B_F} |p|^2 + \frac{1}{2(2\pi )^3} \sum _{k\in {\mathbb {Z}}^3_*} {{\hat{V}}}(k) \left( |L_k|-N\right) \end{aligned}$$
(1.5)

where for every \(k\in {\mathbb {Z}}_{*}^{3}\), we denoted the lune associated to k by

$$\begin{aligned} L_{k}=\left( B_{F}+k\right) \backslash B_{F}=\left\{ p\in {\mathbb {Z}}^{3}\mid \left| p-k\right| \le k_{F}<\left| p\right| \right\} . \end{aligned}$$
(1.6)

Our main result concerns the corrections to the ground state energy. For every \(k\in {\mathbb {Z}}_{*}^{3}\), define

$$\begin{aligned} \lambda _{k,p}=\frac{1}{2}\left( \left| p\right| ^{2}-\left| p-k\right| ^{2}\right) ,\quad \forall p\in L_{k}. \end{aligned}$$
(1.7)

We will prove the following:

Theorem 1.1

As \(k_{F}\rightarrow \infty \) it holds that

$$\begin{aligned} \inf \sigma \left( H_{N}\right) \le E_{\textrm{FS}}+E_{\textrm{corr},\textrm{bos}}+E_{\textrm{corr},\textrm{ex}}+C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$

where

$$\begin{aligned} E_{\textrm{corr},\textrm{bos}}=\frac{1}{\pi }\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{\infty }F\left( \frac{{\hat{V}}_{k}k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{p\in L_{k}}\frac{\lambda _{k,p}}{\lambda _{k,p}^{2}+t^{2}}\right) dt,\quad F\left( x\right) =\log \left( 1+x\right) -x, \end{aligned}$$

is the bosonic contribution and

$$\begin{aligned} E_{\textrm{corr},\textrm{ex}}=\frac{k_{F}^{-2}}{4\left( 2\pi \right) ^{6}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\frac{{\hat{V}}_{k}{\hat{V}}_{p+q-k}}{\lambda _{k,p}+\lambda _{k,q}} \end{aligned}$$

is the exchange contribution, for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Some remarks on our result:

1. Consider the Coulomb potential, \({\hat{V}}_{k}=g\left| k\right| ^{-2}\) for a constant \(g>0\). Following the analysis of [15], we find that

$$\begin{aligned} \inf \sigma \left( H_{N}\right) =E_{\textrm{FS}}+o\left( k_{F}^{3}\right) \end{aligned}$$
(1.8)

where \(E_{\textrm{FS}}\) contains the kinetic energy of order \(k_{F}^{5}\), the direct interaction energy of order \(k_{F}^{5}\) and the exchange interaction energy of order \(k_{F}^{3}\). Furthermore, it is straightforward to adapt the proof in [14] to see that the difference between \(E_{\textrm{FS}}\) and the HF energy is exponentially small as \(k_{F}\rightarrow \infty \). Therefore our result really concerns the correlation energy, which we bound from above by

$$\begin{aligned} E_{\textrm{corr},\textrm{bos}}\sim - k_{F}\log \left( k_{F}\right) \quad \text {and}\quad E_{\textrm{corr},\textrm{ex}}\sim k_{F} \end{aligned}$$
(1.9)

plus the error term of order

$$\begin{aligned} \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\sim \sqrt{\log \left( k_{F}\right) }. \end{aligned}$$
(1.10)

In fact, it is easy to verify (1.10) using \(\sum _{|k|\le k_F} {{\hat{V}}}_k^2 |k| \sim \log ( k_F)\) and \(\sum _{|k|\ge k_F} {{\hat{V}}}_k^2 \sim k_F^{-1}\). To see the leading order behavior \(E_{\textrm{corr},\textrm{ex}}\sim k_F\) in (1.9), one may use that \(\lambda _{k,p} \sim |k| \max \{|k|,k_F\} \) (in an average sense) and that \(|L_k| \sim k_F^2 \min \left\{ |k|,k_{F}\right\} \). Moreover, from the expansion

$$\begin{aligned} \log (1+x)-x\approx -x^2/2 +o(x^3)_{x\rightarrow 0} \end{aligned}$$
(1.11)

we have

$$\begin{aligned} E_{\textrm{corr},\textrm{bos}}&\approx -\frac{1}{4(2\pi )^6}\sum _{k\in {\mathbb {Z}}^3_*} ( {{\hat{V}}}_k k_F^{-1})^2 \frac{2}{\pi }\int _0^\infty \left( \sum _{p\in L_{k}}\frac{\lambda _{k,p}}{\lambda _{k,p}^{2}+t^{2}}\right) ^2 dt \nonumber \\&= -\frac{1}{4(2\pi )^6}\sum _{k\in {\mathbb {Z}}^3_*} ( {{\hat{V}}}_k k_F^{-1})^2 \sum _{p,q\in L_k} \frac{1}{\lambda _{k,p} + \lambda _{k,q}}, \end{aligned}$$
(1.12)

and hence the asymptotic behavior \(E_{\textrm{corr},\textrm{bos}}\sim - k_F \log (k_F)\) in (1.9) follows similarly.

Note that the correlation energy \(E_{\textrm{corr},\textrm{bos}}+E_{\textrm{corr},\textrm{ex}}\) in Theorem 1.1 is exactly the mean-field analogue of the Gell-Mann–Brueckner formula \(c_{1}\rho \log \left( \rho \right) +c_{2}\rho \) for jellium in the thermodynamic limit [13]. Indeed, substituting \(k_{F}^{-1}{\hat{V}}_{k}\rightarrow 4\pi e^{2}\left| k\right| ^{-2}\) and \(\left( 2\pi \right) ^{3}\rightarrow \) the volume \(\Omega \), \(E_{\textrm{corr},\textrm{bos}}\) agrees with [22, Eq. (34)] which is equivalent with [13, Eq. (19)] (accounting also for spin). In the thermodynamic limit, the right-hand side of (1.12) always diverges, no matter if we have the mean-field scaling or not, but the full expression on the left-hand side converges in either case.

Furthermore, we also obtain the exchange contribution \(E_{\textrm{corr},\textrm{ex}}\), which is the analogue of [13, Eq. (9)], which is completely absent from the bosonic model of [22]. With the same substitutions as above, the exchange contribution takes the form

$$\begin{aligned} E_{\textrm{corr},\textrm{ex}}&= 2\cdot \frac{1}{4\Omega ^{2}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\frac{4\pi e^{2}}{\left| k\right| ^{2}}\frac{4\pi e^{2}}{\left| p+q-k\right| ^{2}}\frac{1}{\frac{1}{2}\left( \left| p\right| ^{2}+\left| p-k\right| ^{2}\right) +\frac{1}{2}\left( \left| q\right| ^{2}+\left| q-k\right| ^{2}\right) }\nonumber \\&= \frac{8\pi ^{2}e^{4}}{\Omega ^{2}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\frac{1}{\left| k\right| ^{2}\left| p+q-k\right| ^{2}k\cdot \left( p+q-k\right) } \end{aligned}$$
(1.13)

which agrees with [20, Eq. (9.14)] (noting that we take \(m=1/2\)).

2. If the potential satisfies \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\left| k\right| <\infty \), and so is less singular than the Coulomb potential, then the bosonic contribution \(E_{\textrm{corr},\textrm{bos}}\) is of order \(k_{F}\), while the exchange contribution is \(o\left( k_{F}\right) \). In this case, the upper bound

$$\begin{aligned} \inf \sigma \left( H_{N}\right) \le E_{\textrm{FS}}+E_{\textrm{corr},\textrm{bos}}+o\left( k_{F}\right) \end{aligned}$$
(1.14)

is already known; see [10, Remark 1 after Theorem 1.3] and [5, Appendix A]. Under the stronger condition \(\sum {\hat{V}}_{k}\left| k\right| <\infty \) the matching lower bound was established in [5, 10] (see also [2] and [3] for previous results on the upper and lower bounds, respectively, when \({\hat{V}}_{k}\) is finitely supported). In comparison, the Coulomb potential is much more challenging to analyze, since it leads to an additional logarithmic factor in the bosonic contribution, and lifts the exchange contribution to the order \(k_{F}\). On the mathematical side, working with the Coulomb potential thus requires a substantial refinement of the bosonization method compared to the existing works.

3. Although the case of the greatest physical interest is the Coulomb potential, our result covers a far greater class of singular potentials: Under the condition \(\sum _{k{\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \), the error term \(\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\) is of order at most \(O\left( \sqrt{k_{F}}\right) \), and so Theorem 1.1 is always a meaningful result.

1.2 Overview of the proof

We will construct a trial state by applying a quasi-bosonic Bogolubov transformation to the Fermi state \(\psi _{\textrm{FS}}\). We will follow the general formulation of the bosonization method in [10]. We quickly recall this here for the reader’s convenience, after which we explain the new components of the proof and the structure of the rest of the paper.

1.2.1 Rewriting the Hamiltonian

We will use the second quantization formalism in which we associate to every plane wave state \(u_{p}\) of equation (1.4) the creation and annihilation operators \(c_{p}^{*}=a^{*}(u_p)\) and \(c_{p}=a(u_p)\) on the fermionic Fock space. They obey the canonical anti-commutation relations (CAR)

$$\begin{aligned} \left\{ c_{p},c_{q}\right\} =\left\{ c_{p}^{*},c_{q}^{*}\right\} =0,\quad \left\{ c_{p},c_{q}^{*}\right\} =\delta _{p,q},\quad p,q\in {\mathbb {Z}}^{3}. \end{aligned}$$
(1.15)

The Hamiltonian \(H_{N}\) of equation (1.3) can then be written as \( H_{N}=H_{\textrm{kin}}+k_{F}^{-1}H_{\textrm{int}} \) where

$$\begin{aligned} H_{\textrm{kin}}=\sum _{p\in {\mathbb {Z}}^{3}}\left| p\right| ^{2}c_{p}^{*}c_{p},\quad H_{\textrm{int}}=\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in {\mathbb {Z}}^{3}}{\hat{V}}_{k}c_{p+k}^{*}c_{q-k}^{*}c_{q}c_{p}. \end{aligned}$$
(1.16)

Note that the Fermi state \(\psi _{\textrm{FS}}\) obeys (\(B_{F}^{c}\) denoting the complement of \(B_{F}\) with respect to \({\mathbb {Z}}^{3}\))

$$\begin{aligned} c_{p}\psi _{\textrm{FS}}=0=c_{q}^{*}\psi _{\textrm{FS}},\quad p\in B_{F}^{c},\,q\in B_{F}, \end{aligned}$$
(1.17)

and so it follows by the CAR that the kinetic energy of the Fermi state is

$$\begin{aligned} \left\langle \psi _{\textrm{FS}},H_{\textrm{kin}}\psi _{\textrm{FS}}\right\rangle =\sum _{p\in B_{F}}\left| p\right| ^{2}. \end{aligned}$$
(1.18)

We define the localized kinetic operator \(H_{\textrm{kin}}^{\prime }\) by

$$\begin{aligned} H_{\textrm{kin}}^{\prime }&=H_{\textrm{kin}}-\left\langle \psi _{\textrm{FS}},H_{\textrm{kin}}\psi _{\textrm{FS}}\right\rangle =\sum _{p\in B_{F}^{c}}\left| p\right| ^{2}c_{p}^{*}c_{p}-\sum _{p\in B_{F}}\left| p\right| ^{2}c_{p}c_{p}^{*}\nonumber \\&=\sum _{p\in B_{F}^{c}}\left( \left| p\right| ^{2}-k_{F}^{2}\right) c_{p}^{*}c_{p}+\sum _{p\in B_{F}}\left( k_{F}^{2}-\left| p\right| ^{2}\right) c_{p}c_{p}^{*}, \end{aligned}$$
(1.19)

where we for the last identity used the “particle-hole symmetry”

$$\begin{aligned} {\mathcal {N}}_{E}:=\sum _{p\in B_{F}^{c}}c_{p}^{*}c_{p}=\sum _{p\in B_{F}}c_{p}c_{p}^{*}\quad \text {on }{\mathcal {H}}_{N}. \end{aligned}$$
(1.20)

From the last identity of equation (1.19) it is clear that \(H_{\textrm{kin}}^{\prime }\) is non-negative.

We normal-order \(H_{\textrm{int}}\) with respect to \(\psi _{\textrm{FS}}\): Using the CAR and the fact that \(\sum _{p\in {\mathbb {Z}}^{3}}c_{p}^{*}c_{p}={\mathcal {N}}=N\) on \({\mathcal {H}}_{N}\), it factorizes as

$$\begin{aligned} H_{\textrm{int}}=\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \left( \sum _{p\in {\mathbb {Z}}^{3}}c_{p}^{*}c_{p+k}\right) ^{*}\left( \sum _{q\in {\mathbb {Z}}^{3}}c_{q-k}^{*}c_{q}\right) -N\right) . \end{aligned}$$
(1.21)

Decomposing for every \(k\in {\mathbb {Z}}_{*}^{3}\)

$$\begin{aligned} \sum _{p\in {\mathbb {Z}}^{3}}c_{p-k}^{*}c_{p}=B_{k}+B_{-k}^{*}+D_{k},\quad B_{k}=\sum _{p\in L_{k}}c_{p-k}^{*}c_{p}, \end{aligned}$$
(1.22)

we can write

$$\begin{aligned} H_{\textrm{int}}&=\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \left( B_{k}+B_{-k}^{*}\right) ^{*}\left( B_{k}+B_{-k}^{*}\right) -N\right) \nonumber \\&\quad +\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( 2\,\textrm{Re}\left( \left( B_{k}+B_{-k}^{*}\right) ^{*}D_{k}\right) +D_{k}^{*}D_{k}\right) . \end{aligned}$$
(1.23)

Using the CAR again it is easy to compute that

$$\begin{aligned} \left[ B_{k},B_{k}^{*}\right] =\left| L_{k}\right| -\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \end{aligned}$$
(1.24)

whence (using also that \({\hat{V}}_{k}={\hat{V}}_{-k}\))

$$\begin{aligned} H_{\textrm{int}}&=-\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( N-\left| L_{k}\right| \right) +\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( 2B_{k}^{*}B_{k}+B_{k}B_{-k}+B_{-k}^{*}B_{k}^{*}\right) \nonumber \\&\quad +\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( 2\,\textrm{Re}\left( \left( B_{k}+B_{-k}^{*}\right) ^{*}D_{k}\right) +D_{k}^{*}D_{k}-\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \right) . \end{aligned}$$
(1.25)

Note that the first sum is finite as \(\left| L_{k}\right| =N\) for \(\left| k\right| >2k_{F}\). It is easily verified that \(D_{k}\psi _{\textrm{FS}}=D_{k}^{*}\psi _{\textrm{FS}}=B_{k}\psi _{\textrm{FS}}=0\), so we deduce from this identity that

$$\begin{aligned} \left\langle \psi _{\textrm{FS}},H_{\textrm{int}}\psi _{\textrm{FS}}\right\rangle =-\frac{1}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( N-\left| L_{k}\right| \right) \end{aligned}$$
(1.26)

and we summarize the calculations above in the following:

Proposition 1.2

It holds that

$$\begin{aligned} H_{N}=E_{\textrm{FS}}+H_{\textrm{kin}}^{\prime }+\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( 2B_{k}^{*}B_{k}+B_{k}B_{-k}+B_{-k}^{*}B_{k}^{*}\right) +{\mathcal {C}}+{\mathcal {Q}} \end{aligned}$$

where \(E_{\textrm{FS}}=\left\langle \psi _{\textrm{FS}},H_{N}\psi _{\textrm{FS}}\right\rangle \) and the cubic and quartic terms, \({\mathcal {C}}\) and \({\mathcal {Q}}\), are defined by

$$\begin{aligned} {\mathcal {C}}&=\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\,\textrm{Re}\left( \left( B_{k}+B_{-k}^{*}\right) ^{*}D_{k}\right) ,\\ {\mathcal {Q}}&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( D_{k}^{*}D_{k}-\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \right) . \end{aligned}$$

We will prove that the cubic and quartic terms are negligible, and so the main contribution to the correlation energy comes from the bosonizable terms

$$\begin{aligned} H_{\textrm{eff}}=H_{\textrm{kin}}^{\prime }+\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( 2B_{k}^{*}B_{k}+B_{k}B_{-k}+B_{-k}^{*}B_{k}^{*}\right) . \end{aligned}$$
(1.27)

We will write these in terms of quasi-bosonic operators, which will lead us to define a quasi-bosonic Bogolubov transformation that serves to effectively diagonalize them.

1.2.2 The quasi-bosonic quadratic Hamiltonian

We define the excitation operators \(b_{k,p}^{*}\), \(b_{k,p}\), for \(k\in {\mathbb {Z}}_{*}^{3}\) and \(p\in L_{k}\), by

$$\begin{aligned} b_{k,p}=c_{p-k}^{*}c_{p},\quad b_{k,p}^{*}=c_{p}^{*}c_{p-k}. \end{aligned}$$
(1.28)

The name is due to the fact that \(b_{k,p}^{*}\) acts by annihilating a state with momentum \(p-k\in B_{F}\) and creating a state with momentum \(p\in B_{F}^{c}\), i.e. it excites the state \(p-k\) to the state p.

For the purpose of computations it is convenient to also introduce a basis-independent notation for the quasi-bosonic operators. Consider for \(k\in {\mathbb {Z}}_{*}^{3}\) the auxilliary space \(\ell ^{2}(L_{k})\), which we will consider only as a real vector space, with standard orthonormal basis \(\left( e_{p}\right) _{p\in L_{k}}\). For any \(k\in {\mathbb {Z}}_{*}^{3}\) and \(\varphi \in \ell ^{2}(L_{k})\) we define the generalized excitation operators \(b_{k}(\varphi )\) and \(b_{k}^{*}(\varphi )\) by

$$\begin{aligned} b_{k}(\varphi )=\sum _{p\in L_{k}}\left\langle \varphi ,e_{p}\right\rangle b_{k,p},\quad b_{k}^{*}(\varphi )=\sum _{p\in L_{k}}\left\langle e_{p},\varphi \right\rangle b_{k,p}^{*}. \end{aligned}$$
(1.29)

Note that the assignments \(\varphi \mapsto b_{k}(\varphi ),\,b_{k}^{*}(\varphi )\) are both linear (as we only consider \(\ell ^{2}(L_{k})\) as a real vector space). In this notation we simply have that \(b_{k}\left( e_{p}\right) =b_{k,p}\). A short calculation using the CAR shows that these operators are quasi-bosonic in the following sense:

Lemma 1.3

For any \(k,l\in {\mathbb {Z}}_{*}^{3}\), \(\varphi \in \ell ^{2}(L_{k})\) and \(\psi \in \ell ^{2}(L_l)\) it holds that

$$\begin{aligned} \left[ b_{k}(\varphi ),b_{l}\left( \psi \right) \right] =\left[ b_{k}^{*}(\varphi ),b_{l}^{*}\left( \psi \right) \right] =0,\quad \left[ b_{k}(\varphi ),b_{l}^{*}\left( \psi \right) \right] =\delta _{k,l}\left\langle \varphi ,\psi \right\rangle +\varepsilon _{k,l}\left( \varphi ;\psi \right) , \end{aligned}$$

where the exchange correction \(\varepsilon _{k,l}\left( \varphi ;\psi \right) \) is given by

$$\begin{aligned} \varepsilon _{k,l}\left( \varphi ;\psi \right) =-\sum _{p\in L_{k}}\sum _{q\in L_{l}}\left\langle \varphi ,e_{p}\right\rangle \left\langle e_{q},\psi \right\rangle \left( \delta _{p,q}c_{q-l}c_{p-k}^{*}+\delta _{p-k,q-l}c_{q}^{*}c_{p}\right) . \end{aligned}$$

Note that in the purely bosonic picture the exchange correction is absent. In our quasi-bosonic case, these corrections are small but non-zero; it will be important to keep careful track of them as it is these that gives rise to the exchange contribution \(E_{\textrm{corr},\textrm{ex}}\).

For any operators A, B on \(\ell ^{2}(L_{k})\), we define the associated quadratic operators \(Q_{1}^{k}(A)\), \(Q_{2}^{k}(B)\) on \({\mathcal {H}}_{N}\) byFootnote 3

$$\begin{aligned} Q_{1}^{k}(A)=\sum _{p,q\in L_{k}}\left\langle e_{p},Ae_{q}\right\rangle b_{k,p}^{*}b_{k,q}=\sum _{p\in L_{k}}b_{k}^{*}(Ae_p)b_{k,p} \end{aligned}$$
(1.30)

and

$$\begin{aligned} Q_{2}^{k}(B)= & {} \sum _{p,q\in L_{k}}\left\langle e_{p},Be_{q}\right\rangle \left( b_{k,p}b_{-k,-q}+b_{-k,-q}^{*}b_{k,p}^{*}\right) \nonumber \\= & {} \sum _{p\in L_{k}}\left( b_{k}(Be_p)b_{-k,-p}+b_{-k,-p}^{*}b_{k}^{*}(Be_p)\right) . \end{aligned}$$
(1.31)

Defining the operator \(P_{k}\) on \(\ell ^{2}(L_{k})\) by

$$\begin{aligned} P_{k}{=}\left| v_{k}\right\rangle \left\langle v_{k}\right| ,\quad v_{k}{=}\sqrt{\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}}\sum _{p\in L_{k}}e_{p}\in \ell ^{2}(L_{k}),\quad \text {so that}\quad \left\langle e_{p},P_{k}e_{q}\right\rangle =\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}},\nonumber \\ \end{aligned}$$
(1.32)

we can express the interaction part of the bosonizable terms as

$$\begin{aligned}&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( 2B_{k}^{*}B_{k}+B_{k}B_{-k}+B_{-k}^{*}B_{k}^{*}\right) =\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 2\,Q_{1}^{k}(P_{k})+Q_{2}^{k}(P_{k})\right) \nonumber \\&\quad =\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 2\sum _{p,q\in L_{k}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}b_{k,p}^{*}b_{k,q}+\sum _{p,q\in L_{k}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( b_{k,p}b_{-k,-q}+b_{-k,-q}^{*}b_{k,p}^{*}\right) \right) \end{aligned}$$
(1.33)

The localized kinetic operator \(H_{\textrm{kin}}^{\prime }\) cannot be written exactly in a quadratic quasi-bosonic form, but due to the commutation relation

$$\begin{aligned} \left[ H_{\textrm{kin}}^{\prime },b_{k,p}^{*}\right] =\left( \left| p\right| ^{2}-\left| p-k\right| ^{2}\right) b_{k,p}^{*}=2\lambda _{k,p}b_{k,p}^{*} \end{aligned}$$
(1.34)

(see [10, Eq. (1.76)]) and the quasi-bosonicity of the \(b_{k,p}^{*}\) operators, it is sensible to consider it analogous to a quadratic operator of the form

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}2\lambda _{k,p}b_{k,p}^{*}b_{k,p}=\sum _{k\in {\mathbb {Z}}_{*}^{3}}2\,Q_{1}^{k}(h_{k}) \end{aligned}$$
(1.35)

where the operators \(h_{k}\) on \(\ell ^{2}(L_{k})\) are simply defined by \(h_{k}e_{p}=\lambda _{k,p}e_{p}\). In all we thus consider the bosonizable terms as being analogous to a quasi-bosonic quadratic operator as

$$\begin{aligned} H_{\textrm{eff}}\approx \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 2\,Q_{1}^{k}(h_{k}+P_{k})+Q_{2}^{k}(P_{k})\right) . \end{aligned}$$
(1.36)

1.2.3 The quasi-bosonic Bogolubov transformation

If the quadratic Hamiltonian on the right-hand side of equation (1.36) was exactly bosonic, it could be diagonalized by a Bogolubov transformation. Motivated by this we define such a transformation in the quasi-bosonic setting, while keeping careful track of the additional terms arising from the exchange correction.

Let \(K_{k}:\ell ^{2}(L_{k})\rightarrow \ell ^{2}(L_{k})\), \(k\in {\mathbb {Z}}_{*}^{3}\), be a collection of symmetric operators satisfying

$$\begin{aligned} \left\langle e_{p},K_{k}e_{q}\right\rangle =\left\langle e_{-p},K_{-k}e_{-q}\right\rangle ,\quad k\in {\mathbb {Z}}_{*}^{3},\,p,q\in L_{k}. \end{aligned}$$
(1.37)

Then we define the associated quasi-bosonic Bogolubov kernel \({\mathcal {K}}\) on \({\mathcal {H}}_{N}\) by

$$\begin{aligned} {\mathcal {K}}&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle \left( b_{l,p}b_{-l,-q}-b_{-l,-q}^{*}b_{l,p}^{*}\right) \nonumber \\&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left( b_{l}(K_{l}e_{q})b_{-l,-q}-b_{-l,-q}^{*}b_{l}^{*}(K_{l}e_{q})\right) . \end{aligned}$$
(1.38)

It is obvious from the second equation that \({\mathcal {K}}\) is skew-symmetric; \({\mathcal {K}}\) thus generates a unitary transformation \(e^{{\mathcal {K}}}:{\mathcal {H}}_{N}\rightarrow {\mathcal {H}}_{N}\) - the quasi-bosonic Bogolubov transformation.

We consider the case \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\| K_{k}\right\| _{\textrm{HS}}^{2}<\infty \), in which case \({\mathcal {K}}\) is not only well-defined but even bounded as an operator on \({\mathcal {H}}_{N}\), as we will prove in the next section.

We choose the operators \(\left( K_{k}\right) \) such that \(e^{{\mathcal {K}}}\) would diagonalize the right-hand side of equation (1.36) if it was exactly bosonic. As explained in [10, Sect. 3] the diagonalizing kernel is

$$\begin{aligned} K_{k}=-\frac{1}{2}\log \left( h_{k}^{-\frac{1}{2}}\left( h_{k}^{\frac{1}{2}}\left( h_{k}+2P_{k}\right) h_{k}^{\frac{1}{2}}\right) ^{\frac{1}{2}}h_{k}^{-\frac{1}{2}}\right) . \end{aligned}$$
(1.39)

Keeping careful track of the quasi-bosonic corrections, the action of \(e^{{\mathcal {K}}}\) on the bosonizable terms are as follows:

Theorem 1.4

Let \(H_{\textrm{eff}}\) be as in (1.27). Assume \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \). Then \(e^{{\mathcal {K}}}\) is well-defined and

$$\begin{aligned}&\;\,e^{{\mathcal {K}}}H_{\textrm{eff}}e^{-{\mathcal {K}}}=E_{\textrm{corr},\textrm{bos}}+H_{\textrm{kin}}^{\prime }+2\sum _{k\in {\mathbb {Z}}_{*}^{3}}Q_{1}^{k}(e^{-K_{k}}h_{k}e^{-K_{k}}-h_{k})\\&\quad {+}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}e^{\left( 1-t\right) {\mathcal {K}}}\left( \varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} ){+}2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{1}(A_k(t))\right) {+}2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}dt \end{aligned}$$

where for any symmetric operators \(A_{k},B_{k}:\ell ^{2}(L_{k})\rightarrow \ell ^{2}(L_{k})\) we define

$$\begin{aligned} \varepsilon _{k}(A_{k})&=-\sum _{p\in L_{k}}\left\langle e_{p},A_{k}e_{p}\right\rangle \left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) ,\\ {\mathcal {E}}_{k}^{1}(A_k)&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}b_{k}^{*}(A_k e_p)\left\{ \varepsilon _{k,l}(e_{p};e_{q}),b_{-l}^{*}(K_{-l}e_{-q})\right\} , \\ {\mathcal {E}}_{k}^{2}(B_{k})&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}\left\{ b_{k}(B_k e_p),\left\{ \varepsilon _{-k,-l}(e_{-p};e_{-q}),b_{l}^{*}(K_{l}e_{q})\right\} \right\} , \end{aligned}$$

and for \(t\in \left[ 0,1\right] \) the operators \(A_{k}(t),B_{k}(t):\ell ^{2}(L_{k})\rightarrow \ell ^{2}(L_{k})\) are given by

$$\begin{aligned} A_{k}(t)&=\frac{1}{2}\left( e^{tK_{k}}\left( h_{k}+2P_{k}\right) e^{tK_{k}}+e^{-tK_{k}}h_{k}e^{-tK_{k}}\right) -h_{k},\\ B_{k}(t)&=\frac{1}{2}\left( e^{tK_{k}}\left( h_{k}+2P_{k}\right) e^{tK_{k}}-e^{-tK_{k}}h_{k}e^{-tK_{k}}\right) . \end{aligned}$$

This result is essentially the same as [10, Proposition 5.7], except that we now do not introduce a momentum cut-off and assume only that \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \). For the readers convenience, we include in Appendix A the proof of the identity of Theorem 1.4 - that the condition \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \) is sufficient to define \(e^{{\mathcal {K}}}\) is proved in the next section.

1.2.4 Outline of the paper

Now we come to the main part of the paper. We will choose as our trial state \(\Psi =e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\). As mentioned the cubic and quartic terms are negligible, so the energy of our trial state energy is by Theorem 1.4, to leading order,

$$\begin{aligned}&\left\langle \Psi ,H_{N}\Psi \right\rangle \approx E_{\textrm{FS}}+E_{\textrm{corr},\textrm{bos}}\nonumber \\&\quad +\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},e^{\left( 1-t\right) {\mathcal {K}}}\left( \varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )+2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{1}(A_k(t))\right) \right. \right. \nonumber \\&\quad \left. \left. +2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle dt. \end{aligned}$$
(1.40)

The main task will thus be to extract the exchange contribution \(E_{\textrm{corr},\textrm{ex}}\) from this last term. The outline of the paper is as follows:

In Sect. 2 we show that \(e^{{\mathcal {K}}}\) is well-defined by proving that \({\mathcal {K}}\) is bounded under the condition \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \). We do this by employing a type of higher-order fermionic estimate, resulting in a bound of the form

$$\begin{aligned} \pm {\mathcal {K}}\le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}{\mathcal {N}}_{E} \end{aligned}$$
(1.41)

which will also be crucial in allowing us to control \({\mathcal {N}}_{E}\) later.

In Sect. 3 we establish various bounds on the one-body operators \(K_{k}\), \(A_{k}(t)\) and \(B_{k}(t)\). This is conceptually similar to the one-body analysis in our previous paper [10], but we must refine several estimates in order to establish control using only the assumption that \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}<\infty \).

In Sect. 4 comes the main new work: We engage in a detailed study of the exchange terms \(\mathcal {{\mathcal {E}}}_{k}^{1}(A_k)\) and \(\mathcal {{\mathcal {E}}}_{k}^{2}(B_k)\) so that we can extract \(E_{\textrm{corr},\textrm{ex}}\) from the last term of equation (1.40), first in the form

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt, \end{aligned}$$
(1.42)

and then analyze this expression further to obtain the leading order of this, which is precisely \(E_{\textrm{corr},\textrm{ex}}\) as given in Theorem 1.1.

Finally in Sect. 5 we control the non-bosonizable cubic and quartic terms, and bound the number operator \({\mathcal {N}}_{E}\) and its powers by a Gronwall argument. We end the paper by concluding Theorem 1.1.

2 The Bogolubov Kernel

We consider the kernel \({\mathcal {K}}\) defined by (1.38). We prove the following:

Proposition 2.1

Let \(K_{l}:\ell ^{2}(L_l)\rightarrow \ell ^{2}(L_l)\), \(l\in {\mathbb {Z}}_{*}^{3}\), be a collection of symmetric operators. Then provided \(\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}<\infty \), the expression

$$\begin{aligned} {\mathcal {K}}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle \left( b_{l,p}b_{-l,-q}-b_{-l,-q}^{*}b_{l,p}^{*}\right) \end{aligned}$$

defines a bounded operator \({\mathcal {K}}:{\mathcal {H}}_{N}\rightarrow {\mathcal {H}}_{N}\), and for any \(\Psi ,\Phi \in {\mathcal {H}}_{N}\) we have

$$\begin{aligned} \left| \left\langle \Psi ,{\mathcal {K}}\Phi \right\rangle \right| \le \sqrt{5}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\sqrt{\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle \left\langle \Phi ,\left( {\mathcal {N}}_{E}+1\right) \Phi \right\rangle }. \end{aligned}$$

Note that \({\mathcal {N}}_{E}=\sum _{p\in B_{F}^c} c_{p}^*c_{p}=\sum _{p\in B_{F}}c_{p}c_{p}^{*}\le \left| B_{F}\right| =N\) on \({\mathcal {H}}_{N}\). Moreover, it was shown in [10] (see also Theorem 3.1) that the kernels in (1.39) satisfy \(\left\| K_{k}\right\| _{\textrm{HS}}\le C{\hat{V}}_{k}\), and hence the boundedness of \({\mathcal {K}}\) follows from the assumption \(\sum _{k\in {\mathbb {Z}}_*^3} {{\hat{V}}}_k^2<\infty \). Let us write

$$\begin{aligned} {\mathcal {K}}=\tilde{{\mathcal {K}}}-\tilde{{\mathcal {K}}}^{*}, \quad \tilde{{\mathcal {K}}}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle b_{l,p}b_{-l,-q}, \end{aligned}$$
(2.1)

and focus on the boundedness of \({\mathcal {K}}\). Since

$$\begin{aligned} 2\,\tilde{{\mathcal {K}}}&= \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle b_{l,p}c_{-q+l}^{*}c_{-q}\nonumber \\&= \sum _{q\in B_{F}^{c}}\left( \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}1_{L_l}(q)\left\langle e_{p},K_{l}e_{q}\right\rangle b_{l,p}c_{-q+l}^{*}\right) c_{-q}, \end{aligned}$$
(2.2)

for any \(\Psi ,\Phi \in {\mathcal {H}}_{N}\) we may estimate by the Cauchy–Schwarz inequality

$$\begin{aligned} |\langle \Psi ,\tilde{{\mathcal {K}}}\Phi \rangle |&\le \frac{1}{2}\sqrt{\sum _{q\in B_{F}^{c}}\left\| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle c_{-q+l}b_{l,p}^{*}\Psi \right\| ^{2}}\sqrt{\sum _{q\in B_{F}^{c}}\left\| c_{-q}\Phi \right\| ^{2}}\nonumber \\&= \frac{1}{2}\sqrt{\sum _{q\in B_{F}^{c}}\left\| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle c_{-q+l}b_{l,p}^{*}\Psi \right\| ^{2}}\sqrt{\left\langle \Phi ,{\mathcal {N}}_{E}\Phi \right\rangle }. \end{aligned}$$
(2.3)

The operator appearing under the root can be written as

$$\begin{aligned}&\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle c_{-q+l}b_{l,p}^{*}=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle c_{p}^{*}c_{p-l}c_{-q+l}, \nonumber \\&\quad =\sum _{p'\in B_{F}^{c}}\sum _{q',r'\in B_{F}}\left( \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}\delta _{p',p}\delta _{q',p-l}\delta _{r',-q+l}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle \right) c_{p'}^{*}c_{q'}c_{r'}. \end{aligned}$$
(2.4)

Let us estimate the following general expression, with some coefficients \(A_{p,q,r}\),

$$\begin{aligned} \sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}A_{p,q,r}c_{p}^{*}c_{q}c_{r}. \end{aligned}$$
(2.5)

2.1 A higher order fermionic estimate

Note that the Cauchy–Schwarz inequality trivially implies that

$$\begin{aligned} \left\| \sum A_{p}c_{p}\Psi \right\| \le \sum |A_p| \Vert c_p \Psi \Vert \le \sqrt{\sum |A_p|^2} \sqrt{\sum \Vert c_p \Psi \Vert ^2}, \end{aligned}$$
(2.6)

but this is non-optimal for fermionic states. The “standard fermionic estimate” states that

$$\begin{aligned} \left\| \sum A_{p}c_{p}\Psi \right\| ,\,\left\| \sum A_{p}c_{p}^{*}\Psi \right\| \le \sqrt{\sum \left| A_{p}\right| ^{2}}\left\| \Psi \right\| , \end{aligned}$$
(2.7)

which can be proved by appealing to the CAR as follows:

$$\begin{aligned}&\left( \sum A_{p}c_{p}\right) ^{*}\left( \sum A_{q}c_{q}\right) \le \left\{ \left( \sum A_{p}c_{p}\right) ^{*},\left( \sum A_{q}c_{q}\right) \right\} =\sum \overline{A_{p}}A_{q}\left\{ c_{p}^{*},c_{q}\right\} \nonumber \\&\quad =\sum \left| A_{p}\right| ^{2}. \end{aligned}$$
(2.8)

One can imagine generalizing this to quadratic expressions of the form \(\sum _{p,q}A_{p,q}c_{p}c_{q}\), but this fails since the CAR only yields a commutation relation for such expressions, and not an anticommutation relation. However, for cubic expressions, such as \(\sum _{p,q,r}A_{p,q,r}c_{p}^{*}c_{q}c_{r}\), the CAR does yield an anticommutation relation, allowing the trick to be applied. The anticommutator is of course not constant, but rather a combination of quadratic, linear and constant expressions, but this still yields a reduction in “number operator order”, which will be crucial for our estimation of \(e^{{\mathcal {K}}}{\mathcal {N}}_{E}^{m}e^{-{\mathcal {K}}}\) later on. We will need the following basic anticommutator:

Lemma 2.2

For any \(p,p'\in B_{F}^{c}\) and \(q,q',r,r'\in B_{F}\) it holds that

$$\begin{aligned} \left\{ \left( c_{p}^{*}c_{q}c_{r}\right) ^{*},c_{p'}^{*}c_{q'}c_{r'}\right\} =&\,\, \delta _{p,p'}c_{q'}c_{r'}c_{r}^{*}c_{q}^{*}+\delta _{q,q'}c_{p'}^{*}c_{r'}c_{r}^{*}c_{p}+\delta _{r,r'}c_{p'}^{*}c_{q'}c_{q}^{*}c_{p}\\&-\delta _{r,q'}c_{p'}^{*}c_{r'}c_{q}^{*}c_{p}-\delta _{r,q'}c_{p'}^{*}c_{r'}c_{q}^{*}c_{p}\\&-\delta _{q,q'}\delta _{r,r'}c_{p'}^{*}c_{p}-\delta _{p,p'}\delta _{r,r'}c_{q'}c_{q}^{*}-\delta _{p,p'}\delta _{q,q'}c_{r'}c_{r}^{*}\\&+\delta _{q,r'}\delta _{r,q'}c_{p'}^{*}c_{p}+\delta _{p,p'}\delta _{r,q'}c_{r'}c_{q}^{*}+\delta _{p,p'}\delta _{q,r'}c_{q'}c_{r}^{*}\\&+\delta _{p,p'}\delta _{q,q'}\delta _{r,r'}-\delta _{p,p'}\delta _{q,r'}\delta _{r,q'}. \end{aligned}$$

We can now conclude the desired bound:

Proposition 2.3

Let \(A_{p,q,r}\in {\mathbb {C}}\) for \(p\in B_{F}^{c}\) and \(q,r\in B_{F}\) with \(\sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}<\infty \) be given. Then for any \(\Psi \in {\mathcal {H}}_{N}\)

$$\begin{aligned} \left\| \sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}A_{p,q,r}c_{p}^{*}c_{q}c_{r}\Psi \right\| ^{2}\le 5\sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle . \end{aligned}$$

Proof

As in the proof of the standard fermionic estimate (2.8), we have

$$\begin{aligned}&\left\| \sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}A_{p,q,r}c_{p}^{*}c_{q}c_{r}\Psi \right\| ^{2}&\\&\quad \le \sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left\{ \left( c_{p}^{*}c_{q}c_{r}\right) ^{*},c_{p'}^{*}c_{q'}c_{r'}\right\} \Psi \right\rangle . \end{aligned}$$

Hence, by the identity of Lemma 2.2, we bound the left-hand side by

$$\begin{aligned}&\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{p,p'}c_{q'}c_{r'}c_{r}^{*}c_{q}^{*}+\delta _{q,q'}c_{p'}^{*}c_{r'}c_{r}^{*}c_{p}+\delta _{r,r'}c_{p'}^{*}c_{q'}c_{q}^{*}c_{p}\right) \Psi \right\rangle \nonumber \\&\quad -\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{r,q'}c_{p'}^{*}c_{r'}c_{q}^{*}c_{p}+\delta _{r,q'}c_{p'}^{*}c_{r'}c_{q}^{*}c_{p}\right) \Psi \right\rangle \nonumber \\&\quad -\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{q,q'}\delta _{r,r'}c_{p'}^{*}c_{p}+\delta _{p,p'}\delta _{r,r'}c_{q'}c_{q}^{*}+\delta _{p,p'}\delta _{q,q'}c_{r'}c_{r}^{*}\right) \Psi \right\rangle \nonumber \\&\quad +\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{q,r'}\delta _{r,q'}c_{p'}^{*}c_{p}+\delta _{p,p'}\delta _{r,q'}c_{r'}c_{q}^{*}+\delta _{p,p'}\delta _{q,r'}c_{q'}c_{r}^{*}\right) \Psi \right\rangle \nonumber \\&\quad +\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{p,p'}\delta _{q,q'}\delta _{r,r'}-\delta _{p,p'}\delta _{q,r'}\delta _{r,q'}\right) \Psi \right\rangle . \end{aligned}$$
(2.9)

We estimate the different types of expressions appearing above. Firstly, by the standard fermionic estimate (2.8),

$$\begin{aligned}&\sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{p,p'}c_{q'}c_{r'}c_{r}^{*}c_{q}^{*}\right) \Psi \right\rangle {=}\sum _{p\in B_{F}^{c}}\left\| \sum _{q,r\in B_{F}}\overline{A_{p,q,r}}c_{r}^{*}c_{q}^{*}\Psi \right\| ^{2} \nonumber \\&\quad \le \sum _{p\in B_{F}^{c}}\left( \sum _{q\in B_{F}}\left\| \left( \sum _{r\in B_{F}}\overline{A_{p,q,r}}c_{r}^{*}\right) c_{q}^{*}\Psi \right\| \right) ^{2}\le \sum _{p\in B_{F}^{c}}\left( \sum _{q\in B_{F}}\sqrt{\sum _{r\in B_{F}}\left| A_{p,q,r}\right| ^{2}}\left\| c_{q}^{*}\Psi \right\| \right) ^{2}\nonumber \\&\quad \le \sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}\left( \sum _{q\in B_{F}}\left\| c_{q}^{*}\Psi \right\| ^{2}\right) =\sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$
(2.10)

and likewise for the other two terms on the first line of equation (2.9). For the terms on the second line we similarly estimate

$$\begin{aligned}&\left| \sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{r,q'}c_{p'}^{*}c_{r'}c_{q}^{*}c_{p}\right) \Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{r\in B_{F}}\left\| \sum _{p'\in B_{F}^{c}}\sum _{r'\in B_{F}}A_{p',r,r'}c_{p'}c_{r'}^{*}\Psi \right\| \left\| \sum _{p\in B_{F}^{c}}\sum _{q\in B_{F}}\overline{A_{p,q,r}}c_{q}^{*}c_{p}\Psi \right\| \nonumber \\&\quad \le \sum _{p\in B_{F}^{c}}\sum _{r,r'\in B_{F}}\sqrt{\sum _{p'\in B_{F}^{c}}\left| A_{p',r,r'}\right| ^{2}}\left\| c_{r'}^{*}\Psi \right\| \sqrt{\sum _{q\in B_{F}}\left| A_{p,q,r}\right| ^{2}}\left\| c_{p}\Psi \right\| \nonumber \\&\quad \le \sum _{r\in B_{F}}\sqrt{\sum _{p\in B_{F}^{c}}\sum _{r'\in B_{F}}\left| A_{p,r,r'}\right| ^{2}}\sqrt{\sum _{p\in B_{F}^{c}}\sum _{q\in B_{F}}\left| A_{p,q,r}\right| ^{2}}\sqrt{\sum _{r'\in B_{F}}\left\| c_{r'}^{*}\Psi \right\| ^{2}}\sqrt{\sum _{p\in B_{F}^{c}}\left\| c_{p}\Psi \right\| ^{2}}\nonumber \\&\quad \le \sum _{p\in B_{F}^{c}}\sum _{q\in B_{F}}\left| A_{p,q,r}\right| ^{2}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle . \end{aligned}$$
(2.11)

The terms on the third line of equation (2.9) all factorize in a manifestly non-positive fashion, and so can be dropped, while for the fourth line

$$\begin{aligned}&\left| \sum _{p,p'\in B_{F}^{c}}\sum _{q,q',r,r'\in B_{F}}\overline{A_{p,q,r}}A_{p',q',r'}\left\langle \Psi ,\left( \delta _{q,r'}\delta _{r,q'}c_{p'}^{*}c_{p}\right) \Psi \right\rangle \right| \nonumber \\&\quad =\left| \sum _{q,r\in B_{F}}\left\langle \sum _{p'\in B_{F}^{c}}A_{p',r,q}c_{p'}\Psi ,\sum _{p\in B_{F}^{c}}\overline{A_{p,q,r}}c_{p}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{q,r\in B_{F}}\left\| \sum _{p'\in B_{F}^{c}}A_{p',r,q}c_{p'}\Psi \right\| \left\| \sum _{p\in B_{F}^{c}}\overline{A_{p,q,r}}c_{p}\Psi \right\| \nonumber \\&\quad \le \sum _{q,r\in B_{F}}\sqrt{\sum _{p'\in B_{F}^{c}}\left| A_{p',r,q}\right| ^{2}}\sqrt{\sum _{p\in B_{F}^{c}}\left| A_{p,q,r}\right| ^{2}}\left\| \Psi \right\| ^{2}\le \sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}\left\| \Psi \right\| ^{2}. \end{aligned}$$
(2.12)

Lastly, the terms on the fifth line are seen to simply be constant and easily bounded by \(\sum _{p\in B_{F}^{c}}\sum _{q,r\in B_{F}}\left| A_{p,q,r}\right| ^{2}\), whence the proposition follows. \(\quad \square \)

We can now conclude the following bound for \(\tilde{{\mathcal {K}}}\), which in turn implies Proposition 2.1.

Proposition 2.4

For any \(\Psi ,\Phi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} |\langle \Psi ,\tilde{{\mathcal {K}}}\Phi \rangle |\le \frac{\sqrt{5}}{2}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\sqrt{\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle \left\langle \Phi ,{\mathcal {N}}_{E}\Phi \right\rangle }. \end{aligned}$$

Proof

By (2.3) and (2.4), combined with the estimate of Proposition 2.3, we can bound

$$\begin{aligned} |\langle \Psi ,\tilde{{\mathcal {K}}}\Phi \rangle |&\le \frac{\sqrt{5}}{2}\sqrt{\sum _{q\in B_{F}^{c}}\sum _{p'\in B_{F}^{c}}\sum _{q',r'\in B_{F}}\left| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{l}}\delta _{p',p}\delta _{q',p-l}\delta _{r',-q+l}1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle \right| ^{2}}\nonumber \\&\qquad \cdot \sqrt{\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle \left\langle \Phi ,{\mathcal {N}}_{E}\Phi \right\rangle }. \end{aligned}$$
(2.13)

The sum inside the first square root is exactly equal to \(\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}\).

3 Analysis of the One-Body Operators

In this section we analyze the operators \(K_{k}\), \(A_{k}(t)\) and \(B_{k}(t)\) which appear in Theorem 1.4, obtaining the following:

Theorem 3.1

For any \(k\in {\mathbb {Z}}_{*}^{3}\) it holds that

$$\begin{aligned} \left\| K_{k}\right\| _{\textrm{HS}}\le C{\hat{V}}_{k}\min \,\{1,k_{F}^{2}\left| k\right| ^{-2}\}. \end{aligned}$$

Moreover, for all \(p,q\in L_{k}\) and \(t\in \left[ 0,1\right] \),

$$\begin{aligned} \left| \left\langle e_{p},K_{k}e_{q}\right\rangle \right|&\le C\frac{{\hat{V}}_{k}k_{F}^{-1}}{\lambda _{k,p}+\lambda _{k,q}},\\ \left| \left\langle e_{p},\left( -K_{k}\right) e_{q}\right\rangle -\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\frac{1}{\lambda _{k,p}+\lambda _{k,q}}\right|&\le C\frac{{\hat{V}}_{k}^{2}k_{F}^{-1}}{\lambda _{k,p}+\lambda _{k,q}},\\ \left| \left\langle e_{p},A_{k}(t)e_{q}\right\rangle \right| ,\left| \left\langle e_{p},B_{k}(t)e_{q}\right\rangle \right|&\le C\left( 1+{\hat{V}}_{k}^{2}\right) {\hat{V}}_{k}k_{F}^{-1},\\ \left| \left\langle e_{p},\left\{ K_{k},B_{k}(t)\right\} e_{q}\right\rangle \right|&\le C\left( 1+{\hat{V}}_{k}^{2}\right) {\hat{V}}_{k}^{2}k_{F}^{-1},\\ \left| \left\langle e_{p},\left( \int _{0}^{1}B_{k}(t)dt\right) e_{q}\right\rangle -\frac{{\hat{V}}_{k}k_{F}^{-1}}{4\left( 2\pi \right) ^{3}}\right|&\le C\left( 1+{\hat{V}}_{k}\right) {\hat{V}}_{k}^{2}k_{F}^{-1}, \end{aligned}$$

for a constant \(C>0\) independent of all relevant quantities.

The analysis of this section is similar to that of [10, Sect. 7], but compared to that section, the estimates of this section are considerably more precise: We quantify the error of the upper bound on \(\left\langle e_{p},\left( -K_{k}\right) e_{q}\right\rangle \), obtain elementwise estimates for \(A_{k}(t)\) and \(B_{k}(t)\) (rather than only estimates for the norm \(\left\| \cdot \right\| _{\infty ,2}\) as in [10]), and determine the leading term of the operator \(\int _{0}^{1}B_{k}(t)dt\) which will be needed to extract the exchange contribution in the next section.

3.1 Matrix element estimates for K-quantities

To ease the notation we will abstract the problem slightly: Instead of \(\ell ^{2}(L_{k})\) we consider a general n-dimensional Hilbert space \(\left( V,\left\langle \cdot ,\cdot \right\rangle \right) \), let \(h:V\rightarrow V\) be a positive self-adjoint operator on V with eigenbasis \(\left( x_{i}\right) _{i=1}^{n}\) and eigenvalues \(\left( \lambda _{i}\right) _{i=1}^{n}\), and let \(v\in V\) be any vector such that \(\left\langle x_{i},v\right\rangle \ge 0\) for all \(1\le i\le n\), and let \(P_{w}\left( \cdot \right) =\left\langle w,\cdot \right\rangle w\) be the projection onto \(w\in V\). Theorem 3.1 will then be obtained at the end by insertion of the particular operators \(h_{k}\) and \(P_{k}\).

We define \(K:V\rightarrow V\) by

$$\begin{aligned} K{=}{-}\frac{1}{2}\log \left( h^{-\frac{1}{2}}\left( h^{\frac{1}{2}}\left( h+2P_{v}\right) h^{\frac{1}{2}}\right) ^{\frac{1}{2}}h^{-\frac{1}{2}}\right) {=}{-}\frac{1}{2}\log \left( h^{-\frac{1}{2}}\left( h^{2}+2P_{h^{\frac{1}{2}}v}\right) ^{\frac{1}{2}}h^{-\frac{1}{2}}\right) .\nonumber \\ \end{aligned}$$
(3.1)

As \(\big (h^{2}+2P_{h^{\frac{1}{2}}v}\big )^{\frac{1}{2}} \ge h\) we see that \(K\le 0\). In [10, Sect. 7.2] we proved the following result.

Proposition 3.2

For all \(1\le i,j\le n\) it holds that

$$\begin{aligned} \frac{2}{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}{+}\lambda _{j}}{\le }\left\langle x_{i},\left( e^{-2K}{-}1\right) x_{j}\right\rangle ,\left\langle x_{i},\left( 1-e^{2K}\right) x_{j}\right\rangle {\le }2\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}{+}\lambda _{j}}. \end{aligned}$$

Below it will be more convenient to consider the hyperbolic functions \(\sinh \left( -2K\right) \) and \(\cosh \left( -2K\right) \) rather than \(e^{-2K}\) and \(e^{2K}\). The previous proposition implies the following for these operators:

Corollary 3.3

For any \(1\le i,j\le n\) it holds that

$$\begin{aligned} \left\langle x_{i},\sinh \left( -2K\right) x_{j}\right\rangle&\le 2\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}},\\ \left\langle x_{i},\left( \cosh \left( -2K\right) -1\right) x_{j}\right\rangle&\le \frac{2\left\langle v,h^{-1}v\right\rangle }{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}. \end{aligned}$$

Proof

These bounds follow from Proposition 3.2 and the identities

$$\begin{aligned} \sinh \left( -2K\right)&=\frac{1}{2}\left( \left( e^{-2K}-1\right) +\left( 1-e^{2K}\right) \right) ,\nonumber \\ \cosh \left( -2K\right) -1&=\frac{1}{2}\left( \left( e^{-2K}-1\right) -\left( 1-e^{2K}\right) \right) . \end{aligned}$$
(3.2)

\(\quad \square \)

Now we extend our elementwise estimates to more general operators. These estimates are similar to those of Proposition 7.10 of [10], but more precise. First we consider K itself:

Proposition 3.4

For any \(1\le i,j\le n\) it holds that

$$\begin{aligned} \frac{1}{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}\le \left\langle x_{i},\left( -K\right) x_{j}\right\rangle \le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}. \end{aligned}$$

Proof

From the identity

$$\begin{aligned} -x=\frac{1}{2}\sum _{m=1}^{\infty }\frac{1}{m}\left( 1-e^{2x}\right) ^{m},\quad x\le 0, \end{aligned}$$
(3.3)

which follows by the Mercator series, we thus have that \(-K=\frac{1}{2}\sum _{m=1}^{\infty }\frac{1}{m}\left( 1-e^{2K}\right) ^{m}\). Noting that Proposition 3.2 in particular implies that \(\left\langle x_{i},\left( 1-e^{2K}\right) x_{j}\right\rangle \ge 0\) for all \(1\le i,j\le n\), whence also \(\left\langle x_{i},\left( 1-e^{2K}\right) ^{m}x_{j}\right\rangle \ge 0\) for any \(m\in {\mathbb {N}}\), we may estimate

$$\begin{aligned} \left\langle x_{i},\left( -K\right) x_{j}\right\rangle&=\frac{1}{2}\sum _{m=1}^{\infty }\frac{1}{m}\left\langle x_{i},\left( 1-e^{2K}\right) ^{m}x_{j}\right\rangle \ge \frac{1}{2}\left\langle x_{i},\left( 1-e^{2K}\right) x_{j}\right\rangle \nonumber \\&\ge \frac{1}{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}} \end{aligned}$$
(3.4)

which is the lower bound. This similarly implies that \(\left\langle x_{i},\left( -K\right) ^{m}x_{j}\right\rangle \ge 0\) for all \(1\le i,j\le n\), \(m\in {\mathbb {N}}\), so the upper bound now also follows from Proposition 3.2 by noting that

$$\begin{aligned} \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}{\ge }\frac{1}{2}\left\langle x_{i},\left( e^{-2K}-1\right) x_{j}\right\rangle {=}\frac{1}{2}\sum _{m=1}^{\infty }\frac{1}{m!}\left\langle x_{i},\left( -2K\right) ^{m}x_{j}\right\rangle {\ge }\left\langle x_{i},\left( -K\right) x_{j}\right\rangle .\nonumber \\ \end{aligned}$$
(3.5)

The proof of Proposition 3.4 is complete. \(\quad \square \)

The fact that \(\left\langle x_{i},\left( -K\right) ^{m}x_{j}\right\rangle \ge 0\) for all \(1\le i,j\le n\), \(m\in {\mathbb {N}}\), has the important consequence that for any such i and j, the functions

$$\begin{aligned} t\mapsto \left\langle x_{i},\sinh \left( -tK\right) x_{j}\right\rangle ,\,\left\langle x_{i},\left( \sinh \left( -tK\right) +tK\right) x_{j}\right\rangle ,\,\left\langle x_{i},\left( \cosh \left( -tK\right) -1\right) x_{j}\right\rangle \nonumber \\ \end{aligned}$$
(3.6)

are non-negative and convex for \(t\in \left[ 0,\infty \right) \), as follows by considering the Taylor expansions of the operators involved. This allows us to extend the bounds of Corollary 3.3 to arbitrary \(t\in \left[ 0,1\right] \):

Proposition 3.5

For all \(1\le i,j\le n\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \frac{1}{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}t\le \left\langle x_{i},\sinh \left( -tK\right) x_{j}\right\rangle&\le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}t,\\ 0\le \left\langle x_{i},\left( \cosh \left( -tK\right) -1\right) x_{j}\right\rangle&\le \frac{\left\langle v,h^{-1}v\right\rangle }{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}},\\ \left| \left\langle x_{i},\left( e^{tK}-1\right) x_{j}\right\rangle \right|&\le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}. \end{aligned}$$

Proof

By the noted convexity we immediately conclude the upper bounds

$$\begin{aligned} \left\langle x_{i},\sinh \left( -tK\right) x_{j}\right\rangle&\le \frac{t}{2}\left\langle x_{i},\sinh \left( -2K\right) x_{j}\right\rangle \le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}t\nonumber \\ \left\langle x_{i},\left( \cosh \left( {-}tK\right) {-}1\right) x_{j}\right\rangle&{\le }\frac{t}{2}\left\langle x_{i},\left( \cosh \left( {-}2K\right) {-}1\right) x_{j}\right\rangle \le \frac{\left\langle v,h^{-1}v\right\rangle }{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}\nonumber \\ \end{aligned}$$
(3.7)

and by non-negativity of \(\left\langle x_{i},\left( \sinh \left( -tK\right) +tK\right) x_{j}\right\rangle \) and Proposition 3.4, the lower bound

$$\begin{aligned} \left\langle x_{i},\sinh \left( -tK\right) x_{j}\right\rangle \ge \left\langle x_{i},\left( -tK\right) x_{j}\right\rangle \ge \frac{1}{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}t. \end{aligned}$$
(3.8)

Lastly we can apply the non-negativity of the hyperbolic operators to conclude the bound for \(e^{tK}-1\) as

$$\begin{aligned}&\left| \left\langle x_{i},\left( e^{tK}-1\right) x_{j}\right\rangle \right| =\left| \left\langle x_{i},\left( \left( \cosh \left( -tK\right) -1\right) -\sinh \left( -tK\right) \right) x_{j}\right\rangle \right| \nonumber \\&\quad \le \max \left\{ \left\langle x_{i},\left( \cosh \left( -tK\right) -1\right) x_{j}\right\rangle ,\left\langle x_{i},\sinh \left( -tK\right) x_{j}\right\rangle \right\} \le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}. \end{aligned}$$
(3.9)

\(\quad \square \)

3.2 Matrix element estimates for A(t) and B(t)

We now consider operators \(A(t),B(t):V\rightarrow V\) defined by

$$\begin{aligned} A(t)&=\frac{1}{2}\left( e^{tK}\left( h+2P_{v}\right) e^{tK}+e^{-tK}he^{-tK}\right) -h,\nonumber \\ B(t)&=\frac{1}{2}\left( e^{tK}\left( h+2P_{v}\right) e^{tK}-e^{-tK}he^{-tK}\right) , \end{aligned}$$
(3.10)

for \(t\in \left[ 0,1\right] \). We decompose these as

$$\begin{aligned} A(t)&=A_{h}(t)+e^{tK}P_{v}e^{tK},\quad B(t) =\left( 1-t\right) P_{v}+B_{h}(t)+e^{tK}P_{v}e^{tK}-P_{v} \end{aligned}$$
(3.11)

with

$$\begin{aligned} C_{K}(t)&=\cosh \left( -tK\right) -1, \quad S_{K}(t)=\sinh \left( -tK\right) , \nonumber \\ A_{h}(t)&=\cosh \left( -tK\right) h\cosh \left( -tK\right) +\sinh \left( -tK\right) h\sinh \left( -tK\right) -h\nonumber \\&=\left\{ h,C_{K}(t)\right\} +S_{K}(t)h\,S_{K}(t)+C_{K}(t)h\,C_{K}(t),\nonumber \\ B_{h}(t)&=-\sinh \left( -tK\right) h\cosh \left( -tK\right) -\cosh \left( -tK\right) h\sinh \left( -tK\right) +tP_{v}\nonumber \\&=tP_{v}-\left\{ h,S_{K}(t)\right\} -S_{K}(t)h\,C_{K}(t)-C_{K}(t)h\,S_{K}(t). \end{aligned}$$
(3.12)

We begin by estimating the \(e^{tK}P_{v}e^{tK}\) terms:

Proposition 3.6

For all \(1\le i,j\le n\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \left| \left\langle x_{i},\left( e^{tK}P_{v}e^{tK}-P_{v}\right) x_{j}\right\rangle \right| \le \left( 2+\left\langle v,h^{-1}v\right\rangle \right) \left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$

Proof

Writing

$$\begin{aligned} e^{tK}P_{v}e^{tK}-P_{v}=\left\{ P_{v},e^{tK}-1\right\} +\left( e^{tK}-1\right) P_{v}\left( e^{tK}-1\right) \end{aligned}$$
(3.13)

we see that

$$\begin{aligned} \left\langle x_{i},\left( e^{tK}P_{v}e^{tK}-P_{v}\right) x_{j}\right\rangle&=\left\langle x_{i},v\right\rangle \left\langle \left( e^{tK}-1\right) v,x_{j}\right\rangle +\left\langle x_{i},\left( e^{tK}-1\right) v\right\rangle \left\langle v,x_{j}\right\rangle \nonumber \\&\quad +\left\langle x_{i},\left( e^{tK}-1\right) v\right\rangle \left\langle \left( e^{tK}-1\right) v,x_{j}\right\rangle . \end{aligned}$$
(3.14)

Now, by Proposition 3.5 we can for any \(1\le i\le n\) estimate

$$\begin{aligned} \left| \left\langle x_{i},\left( e^{tK}-1\right) v\right\rangle \right|&=\left| \sum _{j=1}^{n}\left\langle x_{i},\left( e^{tK}-1\right) x_{j}\right\rangle \left\langle x_{j},v\right\rangle \right| \le \sum _{j=1}^{n}\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}\left\langle x_{j},v\right\rangle \nonumber \\&\le \left\langle x_{i},v\right\rangle \sum _{j=1}^{n}\frac{\left| \left\langle x_{j},v\right\rangle \right| ^{2}}{\lambda _{j}}=\left\langle x_{i},v\right\rangle \left\langle v,h^{-1}v\right\rangle \end{aligned}$$
(3.15)

whence the claim follows. \(\quad \square \)

Note that for \(\left\langle x_{i},e^{tK}P_{v}e^{tK}x_{j}\right\rangle \) this in particular implies the bound

$$\begin{aligned} \left| \left\langle x_{i},e^{tK}P_{v}e^{tK}x_{j}\right\rangle \right| \le \left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$
(3.16)

We now consider \(A_{h}(t)\) and \(B_{h}(t)\):

Proposition 3.7

For all \(1\le i,j\le n\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \left| \left\langle x_{i},A_{h}(t)x_{j}\right\rangle \right| ,\left| \left\langle x_{i},B_{h}(t)x_{j}\right\rangle \right| \le 4\left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$

Proof

The estimates of Proposition 3.5 imply that

$$\begin{aligned}&\left| \left\langle x_{i},\left\{ h,C_{K}(t)\right\} x_{j}\right\rangle \right| =\left( \lambda _{i}+\lambda _{j}\right) \left| \left\langle x_{i},C_{K}(t)x_{j}\right\rangle \right| \nonumber \\&\quad \le \left( \lambda _{i}+\lambda _{j}\right) \frac{\left\langle v,h^{-1}v\right\rangle }{1+2\left\langle v,h^{-1}v\right\rangle }\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}} \le \left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle , \end{aligned}$$
(3.17)

and

$$\begin{aligned}&\left| \left\langle x_{i},S_{K}(t)h\,S_{K}(t)x_{j}\right\rangle \right| = \left| \sum _{k=1}^{n}\lambda _{k}\left\langle x_{i},S_{K}(t)x_{k}\right\rangle \left\langle x_{k},S_{K}(t)x_{j}\right\rangle \right| \nonumber \\&\quad \le \sum _{k=1}^{n}\lambda _{k}\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{k}\right\rangle }{\lambda _{i}+\lambda _{k}}\frac{\left\langle x_{k},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{k}+\lambda _{j}}\nonumber \\&\quad \le \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle \sum _{k=1}^{n}\frac{\left| \left\langle x_{k},v\right\rangle \right| ^{2}}{\lambda _{k}}=\left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$
(3.18)

The latter estimate only relied on the inequality

$$\begin{aligned} \left| \left\langle x_{i},S_{K}(t)x_{j}\right\rangle \right| \le \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{\lambda _{i}+\lambda _{j}}, \end{aligned}$$
(3.19)

which is also true for \(C_{K}(t)\), so the terms \(C_{K}(t)h\,C_{K}(t)\), \(C_{K}(t)h\,S_{K}(t)\) and \(S_{K}(t)h\,C_{K}(t)\) also obey this estimate. It thus only remains to bound \(tP_{v}-\left\{ h,S_{K}(t)\right\} \). From Proposition 3.5 we see that

$$\begin{aligned} \frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle }{1+2\left\langle v,h^{-1}v\right\rangle }t\le \left\langle x_{i},\left\{ h,S_{K}(t)\right\} x_{j}\right\rangle \le \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle t \end{aligned}$$
(3.20)

whence

$$\begin{aligned}&\left| \left\langle x_{i},\left( tP_{v}-\left\{ h,S_{K}(t)\right\} \right) x_{j}\right\rangle \right| =\left\langle x_{i},P_{v}x_{j}\right\rangle t-\left\langle x_{i},\left\{ h,S_{K}(t)\right\} x_{j}\right\rangle \nonumber \\&\quad \le \left( 1-\frac{1}{1+2\left\langle v,h^{-1}v\right\rangle }\right) \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle t \le 2\left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$
(3.21)

\(\square \)

Combining equation (3.16) and Proposition 3.7 we conclude the following:

Proposition 3.8

For all \(1\le i,j\le n\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \left| \left\langle x_{i},A(t)x_{j}\right\rangle \right| ,\,\left| \left\langle x_{i},B(t)x_{j}\right\rangle \right| \le 3\left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$

3.2.1 Analysis of \(\left\{ K,B(t)\right\} \) and \(\int _{0}^{1}B(t)dt\)

We end by estimating \(\left\{ K,B(t)\right\} \) and \(\int _{0}^{1}B(t)dt\), the latter of which will be needed for the analysis of the exchange contribution in the next section.

Proposition 3.9

For all \(1\le i,j\le n\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \left| \left\langle x_{i},\left\{ K,B(t)\right\} x_{j}\right\rangle \right| \le 6\left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$

Proof

Using the Propositions 3.4 and 3.8 we see that

$$\begin{aligned}&\left| \left\langle x_{i},KB(t)x_{j}\right\rangle \right| =\left| \sum _{k=1}^{n}\left\langle x_{i},Kx_{k}\right\rangle \left\langle x_{k},B(t)x_{j}\right\rangle \right| \nonumber \\&\quad \le 3\left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\sum _{k=1}^{n}\frac{\left\langle x_{i},v\right\rangle \left\langle v,x_{k}\right\rangle }{\lambda _{i}+\lambda _{k}}\left\langle x_{k},v\right\rangle \left\langle v,x_{j}\right\rangle \nonumber \\&\quad \le 3\left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\sum _{k=1}^{n}\frac{\left| \left\langle x_{k},v\right\rangle \right| ^{2}}{\lambda _{k}}\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle \nonumber \\&\quad =3\left( 1+\left\langle v,h^{-1}v\right\rangle \right) ^{2}\left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$
(3.22)

This estimate is also valid for \(\left| \left\langle x_{i},B(t)Kx_{j}\right\rangle \right| \) whence the claim follows. \(\quad \square \)

Proposition 3.10

For all \(1\le i,j\le n\) it holds that

$$\begin{aligned} \left| \left\langle x_{i},\left( \int _{0}^{1}B(t)dt\right) x_{j}\right\rangle -\frac{1}{2}\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle \right| \le \left( 6+\left\langle v,h^{-1}v\right\rangle \right) \left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$

Proof

Noting that \(\frac{1}{2}\left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle =\frac{1}{2}\left\langle x_{i},P_{v}x_{j}\right\rangle \) and that

$$\begin{aligned} \int _{0}^{1}B(t)dt-\frac{1}{2}P_{v}&=\int _{0}^{1}\left( \left( 1-t\right) P_{v}+B_{h}(t)+e^{tK}P_{v}e^{tK}-P_{v}\right) dt-\frac{1}{2}P_{v}\nonumber \\&=\int _{0}^{1}\left( B_{h}(t)+e^{tK}P_{v}e^{tK}-P_{v}\right) dt \end{aligned}$$
(3.23)

we can estimate using the Propositions 3.6 and 3.7 that

$$\begin{aligned} \left| \left\langle x_{i},\left( \int _{0}^{1}B(t)dt{-}\frac{1}{2}P_{v}\right) x_{j}\right\rangle \right|&\le \int _{0}^{1} \left( \left| \left\langle x_{i},B_{h}(t)x_{j}\right\rangle \right| {+} \left| \left\langle x_{i},\left( e^{tK}P_{v}e^{tK}{-}P_{v}\right) x_{j}\right\rangle \right| \right) dt\nonumber \\&\le \left( 6+\left\langle v,h^{-1}v\right\rangle \right) \left\langle v,h^{-1}v\right\rangle \left\langle x_{i},v\right\rangle \left\langle v,x_{j}\right\rangle . \end{aligned}$$
(3.24)

\(\square \)

3.2.2 Insertion of the particular operators \(h_{k}\) and \(P_{k}\)

Recall that the particular operators we must consider are \(h_{k},P_{k}:\ell ^{2}(L_{k})\rightarrow \ell ^{2}(L_{k})\) defined by

$$\begin{aligned} \begin{array}{ccccccc} h_{k}e_{p} &{} = &{} \lambda _{k,p}e_{p}, &{} &{} \lambda _{k,p} &{} = &{} \frac{1}{2}\left( \left| p\right| ^{2}-\left| p-k\right| ^{2}\right) ,\\ P_{k}(\cdot ) &{} = &{} \left\langle v_{k},\cdot \right\rangle v_{k}, &{} &{} v_{k} &{} = &{} \sqrt{\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}}\sum _{p\in L_{k}}e_{p}. \end{array} \end{aligned}$$
(3.25)

For these we have that

$$\begin{aligned} \left\langle v_{k},h_{k}^{-1}v_{k}\right\rangle =\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{p\in L_{k}}\frac{1}{\lambda _{k,p}}. \end{aligned}$$
(3.26)

In [10] the following estimates for sums of the form \(\sum _{p\in L_{k}}\lambda _{k,p}^{\beta }\) were proved:

Proposition 3.11

For any \(k\in {\mathbb {Z}}_{*}^{3}\) and \(\beta \in \left[ -1,0\right] \) it holds that

$$\begin{aligned} \sum _{p\in L_{k}}\lambda _{k,p}^{\beta }\le C_{\beta }{\left\{ \begin{array}{ll} k_{F}^{2+\beta }\left| k\right| ^{1+\beta } &{} \left| k\right| \le 2k_{F}\\ k_{F}^{3}\left| k\right| ^{2\beta } &{} \left| k\right| >2k_{F} \end{array}\right. } \end{aligned}$$

for a constant \(C_{\beta }>0\) independent of k and \(k_{F}\).

In particular, it holds that

$$\begin{aligned} \sum _{p\in L_{k}}\lambda _{k,p}^{-1}\le Ck_{F}\min \,\{1,k_{F}^{2}\left| k\right| ^{-2}\}, \end{aligned}$$
(3.27)

so \(\left\langle v_{k},h_{k}^{-1}v_{k}\right\rangle \le C{\hat{V}}_{k}.\) Additionally,

$$\begin{aligned} \left\langle e_{p},v_{k}\right\rangle \left\langle v_{k},e_{q}\right\rangle =\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}.\end{aligned}$$
(3.28)

Inserting these quantities into the statements of the Propositions 3.43.8 and 3.9 yields Theorem 3.1, noting also that by Proposition 3.4

$$\begin{aligned} \left\| K_{k}\right\| _{\textrm{HS}}&=\sqrt{\sum _{p,q\in L_{k}}\left| \left\langle e_{p},K_{k}e_{q}\right\rangle \right| ^{2}}{\le }\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sqrt{\sum _{p,q\in L_{k}}\frac{1}{\left( \lambda _{k,p}{+}\lambda _{k,q}\right) ^{2}}}{\le }\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{p\in L_{k}}\frac{1}{\lambda _{k,p}}\nonumber \\&\le C{\hat{V}}_{k}\min \,\{1,k_{F}^{2}\left| k\right| ^{-2}\}. \end{aligned}$$
(3.29)

4 Analysis of the Exchange Terms

In this section we analyze the exchange terms, by which we mean the quantities of the expression

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}e^{\left( 1-t\right) {\mathcal {K}}}\left( \varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} ){+}2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{1}(A_k(t))\right) {+}2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}dt\nonumber \\ \end{aligned}$$
(4.1)

which appears in Theorem 1.4. The name is apt as these enter our calculations due to the presence of the exchange correction \(\varepsilon _{k,l}\left( p;q\right) \) of the quasi-bosonic commutation relations (see Lemma 1.3). To be precise, we will consider in this section the operators \(\varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )\), \({\mathcal {E}}_{k}^{1}(A_k(t))\) and \({\mathcal {E}}_{k}^{2}(B_k(t))\), and the effect of the integration will be handled in the next section. The main result of this section is the following estimates for them:

Theorem 4.1

For any \(\Psi \in {\mathcal {H}}_{N}\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned}&\left| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\langle \Psi ,\varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )\Psi \right\rangle \right| \le Ck_{F}^{-1}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle , \\&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left| \left\langle \Psi ,{\mathcal {E}}_{k}^{1}(A_k(t))\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,\left( {\mathcal {N}}_{E}^{3}+1\right) \Psi \right\rangle , \\&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left| \left\langle \Psi ,\left( {\mathcal {E}}_{k}^{2}(B_k(t))-\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_k(t))\psi _{\textrm{FS}}\right\rangle \right) \Psi \right\rangle \right| \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}^{3}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

The constant terms in the final estimate of the theorem give the exchange contribution

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt. \end{aligned}$$
(4.2)

It is not generally negligible for singular potentials V, and the leading behavior is given by by

Proposition 4.2

It holds that

$$\begin{aligned} \left| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt-E_{\textrm{corr},\textrm{ex}}\right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\), where

$$\begin{aligned} E_{\textrm{corr},\textrm{ex}}=\frac{k_{F}^{-2}}{4\left( 2\pi \right) ^{6}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\frac{{\hat{V}}_{k}{\hat{V}}_{p+q-k}}{\lambda _{k,p}+\lambda _{k,q}}. \end{aligned}$$

4.1 Analysis of \(\varepsilon _{k}\) terms

Let us first consider terms of the form \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}\varepsilon _{k}(A_{k})\), where we recall that

$$\begin{aligned} \varepsilon _{k}(A_{k})=-\sum _{p\in L_{k}}\left\langle e_{p},A_{k}e_{p}\right\rangle \left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) . \end{aligned}$$
(4.3)

When summing over \(k\in {\mathbb {Z}}_{*}^{3}\), we can split the sum into two parts and interchange the summations as follows:

$$\begin{aligned}&-\sum _{k\in {\mathbb {Z}}_{*}^{3}}\varepsilon _{k}(A_{k}) =\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\left\langle e_{p},A_{k}e_{p}\right\rangle c_{p}^{*}c_{p}+\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in \left( L_{k}-k\right) }\left\langle e_{q+k},A_{k}e_{q+k}\right\rangle c_{q}c_{q}^{*}\nonumber \\&\quad =\sum _{p\in B_{F}^{c}}\left( \sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(p)\left\langle e_{p},A_{k}e_{p}\right\rangle \right) c_{p}^{*}c_{p}+\sum _{q\in B_{F}}\left( \sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(q+k)\left\langle e_{q+k},A_{k}e_{q+k}\right\rangle \right) c_{q}c_{q}^{*}. \end{aligned}$$
(4.4)

Recalling that \({\mathcal {N}}_{E}=\sum _{p\in B_{F}^{c}}c_{p}^{*}c_{p}=\sum _{q\in B_{F}}c_{q}c_{q}^{*}\) on \({\mathcal {H}}_{N}\), we can then immediately conclude that

$$\begin{aligned} {\pm }\sum _{k\in {\mathbb {Z}}_{*}^{3}}\varepsilon _{k}(A_{k})&{\le }\left( \sup _{p\in B_{F}^{c}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(p)\left| \left\langle e_{p},A_{k}e_{p}\right\rangle \right| {+}\sup _{q\in B_{F}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(q+k)\left| \left\langle e_{q+k},A_{k}e_{q+k}\right\rangle \right| \right) {\mathcal {N}}_{E}\nonumber \\&\le 2\left( \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sup _{p\in L_{k}}\left| \left\langle e_{p},A_{k}e_{p}\right\rangle \right| \right) {\mathcal {N}}_{E}. \end{aligned}$$
(4.5)

By the estimates of the previous section we thus obtain the first estimate of Theorem 4.1:

Proposition 4.3

For any \(\Psi \in {\mathcal {H}}_{N}\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \left| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\langle \Psi ,\varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )\Psi \right\rangle \right| \le Ck_{F}^{-1}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

By Theorem 3.1 we have that

$$\begin{aligned} \left| \left\langle e_{p},\left\{ K_{k},B_{k}(t)\right\} e_{q}\right\rangle \right| \le C\left( 1+{\hat{V}}_{k}^{2}\right) {\hat{V}}_{k}^{2}k_{F}^{-1},\quad k\in {\mathbb {Z}}_{*}^{3},\,p,q\in L_{k}, \end{aligned}$$
(4.6)

for a constant \(C>0\) independent of all quantities, so

$$\begin{aligned}&\left| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\langle \Psi ,\varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )\Psi \right\rangle \right| \le 2\left( \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sup _{p\in L_{k}}\left| \left\langle e_{p},\left\{ K_{k},B_{k}(t)\right\} e_{p}\right\rangle \right| \right) \left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 1+{\hat{V}}_{k}^{2}\right) {\hat{V}}_{k}^{2}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \le Ck_{F}^{-1}\left( 1+\Vert {\hat{V}}\Vert _{\infty }^{2}\right) \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle . \end{aligned}$$
(4.7)

As \(\Vert {\hat{V}}\Vert _{\infty }^{2}\le \Vert {\hat{V}}\Vert _{2}^{2}=\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\) the claim follows. \(\quad \square \)

4.2 Analysis of \({\mathcal {E}}_{k}^{1}\) terms

We consider terms of the form

$$\begin{aligned} {\mathcal {E}}_{k}^{1}(A_k)=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}b_{k}^{*}(A_k e_p)\left\{ \varepsilon _{k,l}(e_{p};e_{q}),b_{-l}^{*}(K_{-l}e_{-q})\right\} . \end{aligned}$$
(4.8)

Recalling that

$$\begin{aligned} \varepsilon _{k,l}(e_{p};e_{q})=-\left( \delta _{p,q}c_{q-l}c_{p-k}^{*}+\delta _{p-k,q-l}c_{q}^{*}c_{p}\right) \end{aligned}$$
(4.9)

we see that \({\mathcal {E}}_{k}^{1}(A_k)\) splits into two sums as

$$\begin{aligned} -{\mathcal {E}}_{k}^{1}(A_k)&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}b_{k}^{*}(A_k e_p)\left\{ \delta _{p,q}c_{q-l}c_{p-k}^{*},b_{-l}^{*}(K_{-l}e_{-q})\right\} \nonumber \\&\quad +\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) }\sum _{q\in \left( L_{l}-l\right) }b_{k}^{*}(A_{k}e_{p+k})\left\{ \delta _{p,q}c_{q+l}^{*}c_{p+k},b_{-l}^{*}(K_{-l}e_{-q-l})\right\} \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}b_{k}^{*}(A_k e_p)\left\{ c_{p-l}c_{p-k}^{*},b_{-l}^{*}(K_{-l}e_{-p})\right\} \nonumber \\&\quad +\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }b_{k}^{*}(A_{k}e_{p+k})\left\{ c_{p+l}^{*}c_{p+k},b_{-l}^{*}\left( K_{-l}e_{-p-l}\right) \right\} . \end{aligned}$$
(4.10)

The two sums on the right-hand side have the same “schematic form”: They can be written as

$$\begin{aligned} \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) \right\} ,\quad {\tilde{c}}_{p}={\left\{ \begin{array}{ll} c_{p} &{} p\in B_{F}^{c}\\ c_{p}^{*} &{} p\in B_{F} \end{array}\right. }, \end{aligned}$$
(4.11)

where the index set is either the lune \(S_{k}=L_{k}\) or the corresponding hole states \(S_{k}=L_{k}-k,\) and depending on this index set the variables \(p_{1},p_{2},p_{3},p_{4}\) are given by

$$\begin{aligned} \left( p_{1},p_{2},p_{3},p_{4}\right) ={\left\{ \begin{array}{ll} \left( p,p-l,p-k,-p\right) &{} S_{k}=L_{k}\\ \left( p+k,p+l,p+k,-p-l\right) &{} S_{k}=L_{k}-k \end{array}\right. }. \end{aligned}$$
(4.12)

Note that in either case \(p_{1}\), \(p_{3}\) only depend on p and k, while \(p_{2}\), \(p_{4}\) depend only on p and l. Additionally, \(p_{1}\) is always an element of \(L_{k}\) and \(p_{4}\) is always an element of \(L_{-l}\).

Since \(b_{k,p}=c_{p-k}^{*}c_{p}={\tilde{c}}_{p-k}{\tilde{c}}_{p}\) it is easily seen that \(\left[ b,{\tilde{c}}\right] =0\), so in normal-ordering (with respect to \(\psi _{\textrm{FS}}\)) the summand of equation (4.11) we find

$$\begin{aligned}&b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) \right\} \nonumber \\&\quad =b_{k}^{*}\left( A_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}}b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) +b_{k}^{*}\left( A_{k}e_{p_{1}}\right) b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}}\nonumber \\&\quad =2\,{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}+{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left[ {\tilde{c}}_{p_{3}},b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) \right] . \end{aligned}$$
(4.13)

To bound a sum of the form \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\mathcal {E}}_{1}^{k}(A_k)\) it thus suffices to estimate the two schematic forms

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}},\nonumber \\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}. \end{aligned}$$
(4.14)

4.2.1 Preliminary estimates

We prepare for the estimation of these schematic forms by deriving some auxilliary bounds for the operators involved. Recall that for any \(k\in {\mathbb {Z}}_{*}^{3}\) and \(\varphi \in \ell ^{2}(L_{k})\),

$$\begin{aligned} b_{k}(\varphi )=\sum _{p\in L_{k}}\left\langle \varphi ,e_{p}\right\rangle b_{k,p}=\sum _{p\in L_{k}}\left\langle \varphi ,e_{p}\right\rangle c_{p-k}^{*}c_{p}. \end{aligned}$$
(4.15)

Denote \({\mathcal {N}}_{k}=\sum _{p\in L_{k}}b_{k,p}^{*}b_{k,p}\). We can bound both \(b_{k}(\varphi )\) and \(b_{k}^{*}(\varphi )\) as follows:

Proposition 4.4

For any \(k\in {\mathbb {Z}}_{*}^{3}\), \(\varphi \in \ell ^{2}(L_{k})\) and \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} \left\| b_{k}(\varphi )\Psi \right\| \le \left\| \varphi \right\| \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert ,\quad \left\| b_{k}^{*}(\varphi )\Psi \right\| \le \left\| \varphi \right\| \Vert \left( {\mathcal {N}}_{k}+1\right) ^{\frac{1}{2}}\Psi \Vert . \end{aligned}$$

Proof

By the triangle and Cauchy-Schwarz inequalities we immediately obtain

$$\begin{aligned} \left\| b_{k}(\varphi )\Psi \right\| \le \sum _{p\in L_{k}}\left| \left\langle \varphi ,e_{p}\right\rangle \right| \left\| b_{k,p}\Psi \right\| \le \left\| \varphi \right\| \sqrt{\sum _{p\in L_{k}}\left\| b_{k,p}\Psi \right\| ^{2}}=\left\| \varphi \right\| \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \nonumber \\ \end{aligned}$$
(4.16)

and the bound for \(\left\| b_{k}^{*}(\varphi )\Psi \right\| \) now follows from (4.16) and the fact that

$$\begin{aligned} \varepsilon _{k,k}\left( \varphi ;\varphi \right) =\left[ b_{k}(\varphi ),b_{k}^{*}(\varphi )\right] -\Vert \varphi \Vert ^2=-\sum _{p\in L_{k}}\left| \left\langle e_{p},\varphi \right\rangle \right| ^{2}\left( c_{p-k}c_{p-k}^{*}+c_{p}^{*}c_{p}\right) \le 0. \end{aligned}$$
(4.17)

\(\square \)

It is straightforward to see that \({\mathcal {N}}_{k}\le {\mathcal {N}}_{E}\). Moreover, by rearranging the summations,

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\mathcal {N}}_{k} =\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}c_{p}^{*}c_{p-k}c_{p-k}^{*}c_{p} =\sum _{p\in B_{F}^{c}}c_{p}^{*}c_{p}\sum _{k\in \left( B_{F}+p\right) }c_{p-k}c_{p-k}^{*} ={\mathcal {N}}_{E}^{2} \end{aligned}$$
(4.18)

on \({\mathcal {H}}_{N}\). We also note that for any \(\Psi \in {\mathcal {H}}_{N}\) and \(p\in {\mathbb {Z}}^{3}\)

$$\begin{aligned} \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}{\tilde{c}}_{p}\Psi \Vert&\le \Vert {\tilde{c}}_{p}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \le \Vert {\tilde{c}}_{p}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \nonumber \\ \Vert \left( {\mathcal {N}}_{k}+1\right) ^{\frac{1}{2}}{\tilde{c}}_{p}\Psi \Vert&\le \Vert {\tilde{c}}_{p}\left( {\mathcal {N}}_{k}+1\right) ^{\frac{1}{2}}\Psi \Vert \le \Vert {\tilde{c}}_{p}\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert , \end{aligned}$$
(4.19)

as follows by the inequality (considering \(p\in B_{F}^{c}\) for definiteness)

$$\begin{aligned} {\tilde{c}}_{p}^{*}{\mathcal {N}}_{k}{\tilde{c}}_{p}&=\sum _{q\in L_{k}}c_{p}^{*}c_{q}^{*}c_{q-k}c_{q-k}^{*}c_{q}c_{p}=\sum _{q\in L_{k}}c_{q}^{*}c_{q-k}c_{q-k}^{*}\left( c_{q}c_{p}^{*}-\delta _{p,q}\right) c_{p}\nonumber \\&={\mathcal {N}}_{k}c_{p}^{*}c_{p}-1_{L_k}(p)c_{p}^{*}c_{p-k}c_{p-k}^{*}c_{p}\le {\mathcal {N}}_{k}c_{p}^{*}c_{p} \end{aligned}$$
(4.20)

and the fact that \(\left[ {\tilde{c}}_{p}^{*}c_{p},{\mathcal {N}}_{k}\right] =0=\left[ {\tilde{c}}_{p}^{*}c_{p},{\mathcal {N}}_{E}\right] \). Similarly

$$\begin{aligned} \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}{\tilde{c}}_{p}\Psi \Vert \le \Vert {\tilde{c}}_{p}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert ,\quad \Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}{\tilde{c}}_{p}\Psi \Vert \le \Vert {\tilde{c}}_{p}\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert . \end{aligned}$$
(4.21)

To analyze the commutator term \(\left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] \) we calculate a general identity: For any \(l\in {\mathbb {Z}}_{*}^{3}\), \(\psi \in \ell ^{2}(L_l)\) and \(p\in {\mathbb {Z}}^{3}\)

$$\begin{aligned} \left[ b_{l}\left( \psi \right) ,{\tilde{c}}_{p}^{*}\right] ={\left\{ \begin{array}{ll} -1_{L_l}(p+l)\left\langle \psi ,e_{p+l}\right\rangle {\tilde{c}}_{p+l} &{} p\in B_{F}\\ 1_{L_l}(p)\left\langle \psi ,e_{p}\right\rangle {\tilde{c}}_{p-l} &{} p\in B_{F}^{c} \end{array}\right. }, \end{aligned}$$
(4.22)

so for our particular commutator we obtain

$$\begin{aligned} \left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ={\left\{ \begin{array}{ll} -1_{L_{-l}}(p_{3}-l)\left\langle K_{-l}e_{p_{4}},e_{p_{3}-l}\right\rangle {\tilde{c}}_{p_{3}-l} &{} S_{k}=L_{k}\\ 1_{L_{-l}}(p_{3})\left\langle K_{-l}e_{p_{4}},e_{p_{3}}\right\rangle {\tilde{c}}_{p_{3}+l} &{} S_{k}=L_{k}-k \end{array}\right. }.\nonumber \\ \end{aligned}$$
(4.23)

It will be crucial to our estimates that the prefactors obey the following:

Proposition 4.5

For any \(k,l\in {\mathbb {Z}}_{*}^{3}\) and \(p\in S_{k}\cap S_{l}\) it holds that

$$\begin{aligned}&\left| 1_{L_{-l}}(p_{3}-l)\left\langle K_{-l}e_{p_{4}},e_{p_{3}-l}\right\rangle \right| \le C{\hat{V}}_{-l}k_{F}^{-1}\frac{1_{L_{-k}}(p_{2}-k)1_{L_{-l}}(p_{3}-l)}{\sqrt{\lambda _{k,p_{1}}+\lambda _{-k,p_{2}-k}}\sqrt{\lambda _{-l,p_{3}-l}+\lambda _{-l,p_{4}}}},\quad S_{k}=L_{k},\\&\left| 1_{L_{-l}}(p_{3})\left\langle K_{-l}e_{p_{4}},e_{p_{3}}\right\rangle \right| \le C{\hat{V}}_{-l}k_{F}^{-1}\frac{1_{L_{-k}}(p_{2})1_{L_{-l}}(p_{3})}{\sqrt{\lambda _{k,p_{1}}+\lambda _{-k,p_{2}}}\sqrt{\lambda _{-l,p_{3}}+\lambda _{-l,p_{4}}}},\quad S_{k}=L_{k}-k. \end{aligned}$$

Proof

Recall that \(p_{1},p_{2},p_{3},p_{4}\) are given by

$$\begin{aligned} \left( p_{1},p_{2},p_{3},p_{4}\right) ={\left\{ \begin{array}{ll} \left( p,p-l,p-k,-p\right) &{} S_{k}=L_{k}\\ \left( p+k,p+l,p+k,-p-l\right) &{} S_{k}=L_{k}-k \end{array}\right. }. \end{aligned}$$
(4.24)

From this we see that for any \(p\in S_{k}\cap S_{l}\)

$$\begin{aligned} {\left\{ \begin{array}{ll} 1_{L_{-l}}(p_{3}-l) &{} S_{k}=L_{k}\\ 1_{L_{-l}}(p_{3}) &{} S_{k}=L_{k}-k \end{array}\right. } ={\left\{ \begin{array}{ll} 1_{L_{-k}}(p_{2}-k) &{} S_{k}=L_{k}\\ 1_{L_{-k}}(p_{2}) &{} S_{k}=L_{k}-k \end{array}\right. } \end{aligned}$$
(4.25)

where the assumption that \(p\in S_{k}\cap S_{l}\) enters to ensure that \(1_{B_{F}}(p-k)=1=1_{B_{F}}(p-l)\) or \(1_{B_{F}^{c}}(p+k)=1=1_{B_{F}^{c}}(p+l)\), respectively. Importantly this also implies that, when combined with such an indicator function, we also have the identity

$$\begin{aligned}&\quad \,{\left\{ \begin{array}{ll} \lambda _{-l,p_{3}-l}+\lambda _{-l,p_{4}} &{} S_{k}=L_{k}\\ \lambda _{-l,p_{3}}+\lambda _{-l,p_{4}} &{} S_{k}=L_{k}-k \end{array}\right. } ={\left\{ \begin{array}{ll} \lambda _{k,p_{1}}+\lambda _{-k,p_{2}-k} &{} S_{k}=L_{k}\\ \lambda _{k,p_{1}}+\lambda _{-k,p_{2}} &{} S_{k}=L_{k}-k \end{array}\right. }. \end{aligned}$$
(4.26)

The claim now follows by applying these identities to the estimates

$$\begin{aligned} \left| 1_{L_{-l}}(p_{3}-l)\left\langle K_{-l}e_{p_{4}},e_{p_{3}-l}\right\rangle \right|&\le C\frac{1_{L_{-l}}(p_{3}-l){\hat{V}}_{-l}k_{F}^{-1}}{\lambda _{-l,p_{3}-l}+\lambda _{-l,p_{4}}},\qquad \;\;S_{k}=L_{k},\\ \left| 1_{L_{-l}}(p_{3})\left\langle K_{-l}e_{p_{4}},e_{p_{3}}\right\rangle \right|&\le C\frac{1_{L_{-l}}(p_{3}){\hat{V}}_{-l}k_{F}^{-1}}{\lambda _{-l,p_{3}}+\lambda _{-l,p_{4}}},\qquad \qquad S_{k}=L_{k}-k,\nonumber \end{aligned}$$
(4.27)

which are given by Theorem 3.1. \(\quad \square \)

Below we will only use the simpler bound

$$\begin{aligned} {\left\{ \begin{array}{ll} \left| 1_{L_{-l}}(p_{3}-l)\left\langle K_{-l}e_{p_{4}},e_{p_{3}-l}\right\rangle \right| &{} S_{k}=L_{k}\\ \left| 1_{L_{-l}}(p_{3})\left\langle K_{-l}e_{p_{4}},e_{p_{3}}\right\rangle \right| &{} S_{k}=L_{k}-k \end{array}\right. }\le C\frac{{\hat{V}}_{-l}k_{F}^{-1}}{\sqrt{\lambda _{k,p_{1}}\lambda _{-l,p_{4}}}} \end{aligned}$$
(4.28)

but for the \({\mathcal {E}}_{k}^{2}\) terms the more general ones will be needed.

4.2.2 Estimation of \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\mathcal {E}}_{k}^{1}(A_k(t))\)

Now the main estimate of this subsection:

Proposition 4.6

For any collection of symmetric operators \((A_k)\) and \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left\| A_{k}e_{p}\right\| ^{2}}\Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{3}{2}}\Psi \Vert ^{2}\\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert A_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}}\left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| ^{2}. \end{aligned}$$

Proof

Using the triangle and Cauchy-Schwarz inequalities and Proposition 4.4 we estimate

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\| b_{k}\left( A_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{2}}\Psi \right\| \left\| b_{-l}^{*}\left( K_{-l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}\Psi \right\| \nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| A_{k}e_{p_{1}}\right\| \left\| K_{-l}e_{p_{4}}\right\| \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}{\tilde{c}}_{p_{2}}\Psi \Vert \Vert \left( {\mathcal {N}}_{-l}+1\right) ^{\frac{1}{2}}{\tilde{c}}_{p_{3}}\Psi \Vert \nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( \max _{p\in L_{k}}\left\| A_{k}e_{p}\right\| \right) \sum _{p\in S_{k}}\Vert {\tilde{c}}_{p_{3}}\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \nonumber \\&\qquad \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{-l}e_{p_{4}}\right\| ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\Vert {\tilde{c}}_{p_{2}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( \max _{p\in L_{k}}\left\| A_{k}e_{p}\right\| \right) \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \sqrt{\sum _{p\in S_{k}} \Vert {\tilde{c}}_{p_{3}}\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\qquad \sqrt{\sum _{p\in S_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{-l}e_{p_{4}}\right\| ^{2}}\nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left\| A_{k}e_{p}\right\| ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad =\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left\| A_{k}e_{p}\right\| ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert \end{aligned}$$
(4.29)

and the first bound now follows by recalling that \(\left\| K_{l}\right\| _{\textrm{HS}}^{2}\le C{\hat{V}}_{l}\). For the second we have by the equations (4.23) and (4.28) that

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\| \left[ b_{-l}\left( K_{-l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] {\tilde{c}}_{p_{2}}\Psi \right\| \left\| b_{k}^{*}\left( A_{k}e_{p_{1}}\right) \Psi \right\| \nonumber \\&\quad \le C\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{l}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left\| A_{k}e_{p_{1}}\right\| \frac{{\hat{V}}_{-l}k_{F}^{-1}}{\sqrt{\lambda _{k,p_{1}}\lambda _{-l,p_{4}}}}\left\| {\tilde{c}}_{p_{3}\mp l}{\tilde{c}}_{p_{2}}\Psi \right\| \Vert \left( {\mathcal {N}}_{k}+1\right) ^{\frac{1}{2}}\Psi \Vert \nonumber \\&\quad \le Ck_{F}^{-1}\Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \sum _{p}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\frac{1_{S_{l}}(p){\hat{V}}_{-l}}{\sqrt{\lambda _{-l,p_{4}}}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\Vert A_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\nonumber \\&\qquad \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left\| {\tilde{c}}_{p_{3}\mp l}{\tilde{c}}_{p_{2}}\Psi \right\| ^{2}}\nonumber \\&\quad \le Ck_{F}^{-1}\Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \sum _{p}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\Vert A_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\frac{{\hat{V}}_{-l}^{2}}{\lambda _{-l,p_{4}}}}\nonumber \\&\qquad \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\Vert {\tilde{c}}_{p_{2}}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad \le Ck_{F}^{-1}\Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\Vert A_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{-l}^{2}\sum _{p\in S_{l}}\frac{1}{\lambda _{-l,p_{4}}}}\nonumber \\&\quad \le Ck_{F}^{-1}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert A_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\sum _{p\in L_{l}}\frac{1}{\lambda _{l,p}}}\Vert \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| \end{aligned}$$
(4.30)

where we used \(\left\| A_{k}e_{p_{1}}\right\| \lambda _{k,p_{1}}^{-\frac{1}{2}}=\Vert A_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert \). The claim follows by \(\sum _{p\in L_{l}}\lambda _{l,p}^{-1}\le Ck_{F}\). \(\square \)

The bound on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\mathcal {E}}_{k}^{1}(A_k(t))\) of Theorem 4.1 now follows by our matrix element estimates:

Proposition 4.7

For any \(\Psi \in {\mathcal {H}}_{N}\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left| \left\langle \Psi ,{\mathcal {E}}_{k}^{1}(A_k(t))\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,\left( {\mathcal {N}}_{E}^{3}+1\right) \Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

By Theorem 3.1 we have

$$\begin{aligned} \left| \left\langle e_{p},A_{k}(t)e_{q}\right\rangle \right| \le C\left( 1+{\hat{V}}_{k}^{2}\right) {\hat{V}}_{k}k_{F}^{-1},\quad k\in {\mathbb {Z}}_{*}^{3},\,p,q\in L_{k}. \end{aligned}$$
(4.31)

Combining with \(\left| L_{k}\right| \le C\min \left\{ k_{F}^{2}\left| k\right| ,k_{F}^{3}\right\} \) since \(\sum _{q\in L_{k}}\lambda _{k,q}^{-1}\le Ck_{F}\), we get

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left\| A_{k}(t)e_{p}\right\| ^{2}&\le \frac{C}{k_{F}^{2}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 1+{\hat{V}}_{k}^{2}\right) ^{2}{\hat{V}}_{k}^{2}\left| L_{k}\right| \nonumber \\&=C\left( 1+\Vert {\hat{V}}\Vert _{\infty }^{4}\right) \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} \nonumber \\ \sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert A_{k}(t)h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}&=\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\left| \left\langle e_{p},A_{k}(t)h_{k}^{-\frac{1}{2}}e_{q}\right\rangle \right| ^{2}\nonumber \\&\le Ck_{F}^{-2}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( 1+{\hat{V}}_{k}^{2}\right) ^{2}{\hat{V}}_{k}^{2}\left| L_{k}\right| \sum _{q\in L_{k}}\frac{1}{\lambda _{k,q}}\nonumber \\&\le Ck_{F}\left( 1+\Vert {\hat{V}}\Vert _{\infty }^{4}\right) \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} . \end{aligned}$$
(4.32)

Inserting these estimates into Proposition 4.6 yields the claim. \(\quad \square \)

4.3 Analysis of \({\mathcal {E}}_{k}^{2}\) terms

Now we come to the terms

$$\begin{aligned} {\mathcal {E}}_{k}^{2}(B_{k})=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}\left\{ b_{k}(B_k e_p),\left\{ \varepsilon _{-k,-l}(e_{-p};e_{-q}),b_{l}^{*}(K_{l}e_{q})\right\} \right\} . \end{aligned}$$
(4.33)

We will analyze these similarly to the \({\mathcal {E}}_{k}^{1}(A_k)\) terms. Noting that

$$\begin{aligned} \varepsilon _{-k,-l}(e_{-p};e_{-q})=-\left( \delta _{p,q}c_{-q+l}c_{-p+k}^{*}+\delta _{p-k,q-l}c_{-q}^{*}c_{-p}\right) \end{aligned}$$
(4.34)

we find that \({\mathcal {E}}_{k}^{2}(B_{k})\) splits into two sums as

$$\begin{aligned} -2\,{\mathcal {E}}_{k}^{2}(B_{k})&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}\left\{ b_{k}(B_k e_p),\left\{ \delta _{p,q}c_{-q+l}c_{-p+k}^{*},b_{l}^{*}(K_{l}e_{q})\right\} \right\} \nonumber \\&\quad +\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) }\sum _{q\in \left( L_{l}-l\right) }\left\{ b_{k}\left( B_{k}e_{p+k}\right) ,\left\{ \delta _{p,q}c_{-q-l}^{*}c_{-p-k},b_{l}^{*}\left( K_{l}e_{q+l}\right) \right\} \right\} \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left\{ b_{k}(B_k e_p),\left\{ c_{-p+l}c_{-p+k}^{*},b_{l}^{*}\left( K_{l}e_{p}\right) \right\} \right\} \nonumber \\&\quad +\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }\left\{ b_{k}\left( B_{k}e_{p+k}\right) ,\left\{ c_{-p-l}^{*}c_{-p-k},b_{l}^{*}\left( K_{l}e_{p+l}\right) \right\} \right\} \end{aligned}$$
(4.35)

and again these share a common schematic form, namely

$$\begin{aligned} \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\{ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} \right\} \end{aligned}$$
(4.36)

where the momenta are now

$$\begin{aligned} \left( p_{1},p_{2},p_{3},p_{4}\right) ={\left\{ \begin{array}{ll} \left( p,-p+l,-p+k,p\right) &{} S_{k}=L_{k}\\ \left( p+k,-p-l,-p-k,p+l\right) &{} S_{k}=L_{k}-k \end{array}\right. }. \end{aligned}$$
(4.37)

Again \(p_{1}\), \(p_{3}\) only depend on p and k while \(p_{2}\), \(p_{4}\) only depend on p and l.

We normal order the summand: As

$$\begin{aligned}&b_{k}\left( B_{k}e_{p_{1}}\right) \left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} \nonumber \\&\quad ={\tilde{c}}_{p_{2}}^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \left\{ {\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} +\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] \left\{ {\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} \nonumber \\&\quad =2\,{\tilde{c}}_{p_{2}}^{*}b_{k}\left( B_{k}e_{p_{1}}\right) b_{l}^{*}\left( K_{l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}+{\tilde{c}}_{p_{2}}^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\nonumber \\&\qquad +2\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] b_{l}^{*}\left( K_{l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}+\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] \left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\nonumber \\&\quad =2\,{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}+2\,{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right] {\tilde{c}}_{p_{3}}\nonumber \\&\qquad +{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) +{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right] \nonumber \\&\qquad +2\,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}}+2\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ^{*}\right] ^{*}{\tilde{c}}_{p_{3}}\nonumber \\&\qquad -\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] +\left\{ \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right\} \end{aligned}$$
(4.38)

and simply

$$\begin{aligned}&\left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} b_{k}\left( B_{k}e_{p_{1}}\right) ={\tilde{c}}_{p_{2}}^{*}\left\{ {\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} b_{k}\left( B_{k}e_{p_{1}}\right) \nonumber \\&\quad =2\,{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}+{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \end{aligned}$$
(4.39)

the summand decomposes into 8 schematic forms as

$$\begin{aligned}&\left\{ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left\{ {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}},b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right\} \right\} \nonumber \\&\quad =4\,{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}+2\,{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right] {\tilde{c}}_{p_{3}}\nonumber \\&\qquad +2\,{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) +2\,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}}\nonumber \\&\qquad +{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right] +2\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ^{*}\right] ^{*}{\tilde{c}}_{p_{3}}\nonumber \\&\qquad -\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] +\left\{ \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right\} . \end{aligned}$$
(4.40)

Of these it should be noted that only the last one is proportional to a constant (i.e. does not contain any creation or annihilation operators). As the rest annihilate \(\psi _{\textrm{FS}}\), it follows that (when summed) the constant term yields precisely \(\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_{k})\psi _{\textrm{FS}}\right\rangle \), whence bounding the other terms amounts to estimating the operator

$$\begin{aligned} {\mathcal {E}}_{k}^{2}(B_{k})-\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_{k})\psi _{\textrm{FS}}\right\rangle \end{aligned}$$
(4.41)

as in the statement of Theorem 4.1.

4.3.1 Estimation of the top terms

We begin by bounding the “top” terms

$$\begin{aligned}{} & {} \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}\quad \text {and}\\{} & {} \qquad \quad \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right] {\tilde{c}}_{p_{3}}. \end{aligned}$$

By the quasi-bosonic commutation relations, the commutator term reduces to

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right] {\tilde{c}}_{p_{3}}\nonumber \\&\quad =\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\left\langle B_{k}e_{p_{1}},K_{k}e_{p_{1}}\right\rangle {\tilde{c}}_{p_{3}}^{*}{\tilde{c}}_{p_{3}}+\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\varepsilon _{k,l}\left( B_{k}e_{p_{1}};K_{l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}} \end{aligned}$$
(4.42)

where we used that \(p_{1}=p_{4}\) and \(p_{2}=p_{3}\) when \(k=l\). Now, the exchange correction of the second sum splits as

$$\begin{aligned} -\varepsilon _{k,l}\left( B_{k}e_{p_{1}};K_{l}e_{p_{4}}\right)&=\sum _{q\in L_{k}}\sum _{q'\in L_{l}}\left\langle B_{k}e_{p_{1}},e_{q}\right\rangle \left\langle e_{q'},K_{l}e_{p_{4}}\right\rangle \left( \delta _{q,q'}c_{q'-l}c_{q-k}^{*}+\delta _{q-k,q'-l}c_{q'}^{*}c_{q}\right) \nonumber \\&=\sum _{q\in L_{k}\cap L_{l}}\left\langle B_{k}e_{p_{1}},e_{q}\right\rangle \left\langle e_{q},K_{l}e_{p_{4}}\right\rangle {\tilde{c}}_{q-l}^{*}{\tilde{c}}_{q-k}\nonumber \\&\quad +\sum _{q\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }\left\langle B_{k}e_{p_{1}},e_{q+k}\right\rangle \left\langle e_{q+l},K_{l}e_{p_{4}}\right\rangle {\tilde{c}}_{q+l}^{*}{\tilde{c}}_{q+k} \end{aligned}$$
(4.43)

which are both of the schematic form \(\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left\langle B_{k}e_{p_{1}},e_{q_{1}}\right\rangle \left\langle e_{q_{4}},K_{l}e_{p_{4}}\right\rangle {\tilde{c}}_{q_{2}}^{*}{\tilde{c}}_{q_{3}}\).

To estimate \(\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\varepsilon _{k,l}\left( B_{k}e_{p_{1}};K_{l}e_{p_{4}}\right) {\tilde{c}}_{p_{3}}\) it thus suffices to consider

$$\begin{aligned} \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left\langle B_{k}e_{p_{1}},e_{q_{1}}\right\rangle \left\langle e_{q_{4}},K_{l}e_{p_{4}}\right\rangle {\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{q_{2}}^{*}{\tilde{c}}_{q_{3}}{\tilde{c}}_{p_{3}}. \end{aligned}$$
(4.44)

The estimates for the top terms are as follows:

Proposition 4.8

For any collection of symmetric operators \((B_k)\) and \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left\| B_{k}e_{p}\right\| ^{2}}\Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert ^{2}\\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \right] {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}}\left\| {\mathcal {N}}_{E}\Psi \right\| ^{2} \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

The first term we can estimate as in Proposition 4.6 by

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\| b_{l}\left( K_{l}e_{p_{4}}\right) {\tilde{c}}_{p_{2}}\Psi \right\| \left\| b_{k}\left( B_{k}e_{p_{1}}\right) {\tilde{c}}_{p_{3}}\Psi \right\| \nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| B_{k}e_{p_{1}}\right\| \left\| K_{l}e_{p_{4}}\right\| \Vert {\mathcal {N}}_{l}^{\frac{1}{2}}{\tilde{c}}_{p_{2}}\Psi \Vert \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}{\tilde{c}}_{p_{3}}\Psi \Vert \nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( \max _{p\in L_{k}}\left\| B_{k}e_{p}\right\| \right) \sum _{p\in S_{k}}\Vert {\tilde{c}}_{p_{3}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{l}e_{p_{4}}\right\| ^{2}}\nonumber \\&\qquad \times \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\Vert {\tilde{c}}_{p_{2}}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad \le \left\| {\mathcal {N}}_{E}\Psi \right\| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( \max _{p\in L_{k}}\left\| B_{k}e_{p}\right\| \right) \sqrt{\sum _{p\in S_{k}}\Vert {\tilde{c}}_{p_{3}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert ^{2}}\sqrt{\sum _{p\in S_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{l}e_{p_{4}}\right\| ^{2}}\nonumber \\&\quad \le \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\left\| {\mathcal {N}}_{E}\Psi \right\| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left( \max _{p\in L_{k}}\left\| B_{k}e_{p}\right\| \right) \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \end{aligned}$$
(4.45)

and obviously \(\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}{\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \le \Vert {\mathcal {N}}_{E}\Psi \Vert \Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert \). For the commutator term we have

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\left| \left\langle B_{k}e_{p_{1}},K_{k}e_{p_{1}}\right\rangle \left\langle \Psi ,{\tilde{c}}_{p_{3}}^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right|&\le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left| \left\langle B_{k}e_{p},K_{k}e_{p}\right\rangle \right| \sum _{p\in S_{k}}\left\langle \Psi ,{\tilde{c}}_{p_{3}}^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \nonumber \\&\le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\left| \left\langle e_{p},B_{k}K_{k}e_{p}\right\rangle \right| \left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle . \end{aligned}$$
(4.46)

By the matrix element estimate for \(K_{k}\) of Theorem 3.1 we have for any \(p\in L_{k}\) that

$$\begin{aligned} \left| \left\langle B_{k}e_{p},K_{k}e_{p}\right\rangle \right|&\le \sum _{q\in L_{k}}\left| \left\langle B_{k}e_{p},e_{q}\right\rangle \right| \left| \left\langle e_{q},K_{k}e_{p}\right\rangle \right| \le C\sum _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| \frac{{\hat{V}}_{k}k_{F}^{-1}}{\lambda _{k,q}+\lambda _{k,p}}\nonumber \\&\le C{\hat{V}}_{k}k_{F}^{-1}\left( \max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| \right) \sum _{q\in L_{k}}\frac{1}{\lambda _{k,q}}\le C{\hat{V}}_{k}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| \end{aligned}$$
(4.47)

since \(\sum _{q\in L_{k}}\lambda _{k,q}^{-1}\le Ck_{F}\). Consequently

$$\begin{aligned}&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\left| \left\langle B_{k}e_{p_{1}},K_{k}e_{p_{1}}\right\rangle \left\langle \Psi ,{\tilde{c}}_{p_{3}}^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \le C\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \max _{p,q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| \right) \left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \nonumber \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p,q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$
(4.48)

and clearly

$$\begin{aligned} \max _{p,q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}\le \sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}. \end{aligned}$$
(4.49)

Finally

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left| \left\langle B_{k}e_{p_{1}},e_{q_{1}}\right\rangle \left\langle e_{q_{4}},K_{l}e_{p_{4}}\right\rangle \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{q_{2}}^{*}{\tilde{c}}_{q_{3}}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left| \left\langle B_{k}e_{p_{1}},e_{q_{1}}\right\rangle \right| \left| \left\langle e_{q_{4}},K_{l}e_{p_{4}}\right\rangle \right| \left\| {\tilde{c}}_{q_{2}}{\tilde{c}}_{p_{2}}\Psi \right\| \left\| {\tilde{c}}_{q_{3}}{\tilde{c}}_{p_{3}}\Psi \right\| \nonumber \\&\quad \le \sqrt{\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left| \left\langle B_{k}e_{p_{1}},e_{q_{1}}\right\rangle \right| ^{2}\left\| {\tilde{c}}_{q_{2}}{\tilde{c}}_{p_{2}}\Psi \right\| ^{2}}\nonumber \\&\qquad \sqrt{\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\sum _{q\in S_{k}^{\prime }\cap S_{l}^{\prime }}\left| \left\langle e_{q_{4}},K_{l}e_{p_{4}}\right\rangle \right| ^{2}\left\| {\tilde{c}}_{q_{3}}{\tilde{c}}_{p_{3}}\Psi \right\| ^{2}}\nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p_{1}},B_{k}e_{q}\right\rangle \right| ^{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\Vert {\tilde{c}}_{p_{2}}{\mathcal {N}}_{E}^{\frac{1}{2}} \Psi \Vert ^{2}}\nonumber \\&\qquad \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{l}}\left\| K_{l}e_{p_{4}}\right\| ^{2}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left\| {\tilde{c}}_{p_{3}}\Psi \right\| ^{2}}\nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| \end{aligned}$$
(4.50)

whence the claim follows as \(\left\| K_{l}\right\| _{\textrm{HS}}\le C{\hat{V}}_{l}\). \(\quad \square \)

4.3.2 Estimation of the single commutator terms

For the single commutator terms

$$\begin{aligned}{} & {} \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \quad \text {and}\\{} & {} \qquad \quad \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}} \end{aligned}$$

we note that by equation (4.22), the commutator \(\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] \) is given by

$$\begin{aligned} \left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ={\left\{ \begin{array}{ll} -1_{L_{l}}(p_{3}+l)\left\langle K_{l}e_{p_{4}},e_{p_{3}+l}\right\rangle {\tilde{c}}_{p_{3}+l} &{} S_{k}=L_{k}\\ 1_{L_{l}}(p_{3})\left\langle K_{l}e_{p_{4}},e_{p_{3}}\right\rangle {\tilde{c}}_{p_{3}-l} &{} S_{k}=L_{k}-k \end{array}\right. }. \end{aligned}$$
(4.51)

The prefactors again obey an estimate as in Proposition 4.5:

Proposition 4.9

For any \(k,l\in {\mathbb {Z}}_{*}^{3}\) and \(p\in S_{k}\cap S_{l}\) it holds that

$$\begin{aligned} \left| 1_{L_{l}}(p_{3}+l)\left\langle K_{l}e_{p_{4}},e_{p_{3}+l}\right\rangle \right|&\le C{\hat{V}}_{l}k_{F}^{-1}\frac{1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)}{\sqrt{\lambda _{k,p_{1}}+\lambda _{k,p_{2}+k}}\sqrt{\lambda _{l,p_{3}+l}+\lambda _{l,p_{4}}}},\quad S_{k}=L_{k},\\ \left| 1_{L_{l}}(p_{3})\left\langle K_{l}e_{p_{4}},e_{p_{3}}\right\rangle \right|&\le C{\hat{V}}_{l}k_{F}^{-1}\frac{1_{L_{k}}(p_{2})1_{L_{l}}(p_{3})}{\sqrt{\lambda _{k,p_{1}}+\lambda _{k,p_{2}}}\sqrt{\lambda _{l,p_{3}}+\lambda _{l,p_{4}}}},\quad S_{k}=L_{k}-k. \end{aligned}$$

The proof is essentially the same as that of Proposition 4.5 (indeed, this proposition can be obtained directly from the former by appropriate substition, but some care must be used since the \(p_{i}\)’s differ in their definition).

For the single commutator terms we again only need the simpler bound

$$\begin{aligned} {\left\{ \begin{array}{ll} \left| 1_{L_{l}}(p_{3}+l)\left\langle K_{l}e_{p_{4}},e_{p_{3}+l}\right\rangle \right| &{} S_{k}=L_{k}\\ \left| 1_{L_{l}}(p_{3})\left\langle K_{l}e_{p_{4}},e_{p_{3}}\right\rangle \right| &{} S_{k}=L_{k}-k \end{array}\right. }\le C\frac{{\hat{V}}_{l}k_{F}^{-1}}{\sqrt{\lambda _{k,p_{1}}\lambda _{l,p_{4}}}} \end{aligned}$$
(4.52)

but the full one will be needed for the double commutator terms below. Now the estimate:

Proposition 4.10

For any collection of symmetric operators \((B_k)\) and \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \Psi \right\rangle \right| \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert B_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}}\left\| {\mathcal {N}}_{E}\Psi \right\| ^{2},\\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}}\left\| {\mathcal {N}}_{E}\Psi \right\| ^{2} \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

As in the second estimate of Proposition 4.6 we have

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}b_{k}\left( B_{k}e_{p_{1}}\right) \Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\| \left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] {\tilde{c}}_{p_{2}}\Psi \right\| \left\| b_{k}\left( B_{k}e_{p_{1}}\right) \Psi \right\| \nonumber \\&\quad \le C\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{l}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left\| B_{k}e_{p_{1}}\right\| \frac{{\hat{V}}_{l}k_{F}^{-1}}{\sqrt{\lambda _{k,p_{1}}\lambda _{l,p_{4}}}}\left\| {\tilde{c}}_{p_{3}\pm l}{\tilde{c}}_{p_{2}}\Psi \right\| \Vert {\mathcal {N}}_{k}^{\frac{1}{2}}\Psi \Vert \nonumber \\&\quad \le Ck_{F}^{-1}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \sum _{p}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\frac{1_{S_{l}}(p){\hat{V}}_{l}}{\sqrt{\lambda _{l,p_{4}}}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\Vert B_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\nonumber \\&\qquad \times \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left\| {\tilde{c}}_{p_{3}\pm l}{\tilde{c}}_{p_{2}}\Psi \right\| ^{2}}\nonumber \\&\quad \le Ck_{F}^{-1}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \sum _{p}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\Vert B_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\frac{{\hat{V}}_{l}^{2}}{\lambda _{l,p_{4}}}}\nonumber \\&\qquad \times \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\Vert {\tilde{c}}_{p_{2}}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad \le Ck_{F}^{-1}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\Vert B_{k}h_{k}^{-\frac{1}{2}}e_{p_{1}}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\sum _{p\in S_{l}}\frac{1}{\lambda _{l,p_{4}}}}\nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert B_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| . \end{aligned}$$
(4.53)

By equation (4.22) it holds that

$$\begin{aligned} \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ={\left\{ \begin{array}{ll} -1_{L_{k}}(p_{2}+k)\left\langle B_{k}e_{p_{1}},e_{p_{2}+k}\right\rangle {\tilde{c}}_{p_{2}+k} &{} p\in B_{F}\\ 1_{L_{k}}(p_{2})\left\langle B_{k}e_{p_{1}},e_{p_{2}}\right\rangle {\tilde{c}}_{p_{2}-k} &{} p\in B_{F}^{c} \end{array}\right. } \end{aligned}$$
(4.54)

so the second term can be bounded as

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,b_{l}^{*}\left( K_{l}e_{p_{4}}\right) \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left\| b_{l}\left( K_{l}e_{p_{4}}\right) \Psi \right\| \left\| \left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] {\tilde{c}}_{p_{3}}\Psi \right\| \nonumber \\&\quad \le \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left( \max _{q\in L_{k}}\left| \left\langle e_{p_{1}},B_{k}e_{q}\right\rangle \right| \right) \left\| K_{l}e_{p_{4}}\right\| \Vert {\mathcal {N}}_{l}^{\frac{1}{2}}\Psi \Vert \left\| {\tilde{c}}_{p_{2}\pm k}{\tilde{c}}_{p_{3}}\Psi \right\| \nonumber \\&\quad \le \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \sum _{p}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left( \max _{q\in L_{k}}\left| \left\langle e_{p_{1}},B_{k}e_{q}\right\rangle \right| \right) \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{l}e_{p_{4}}\right\| ^{2}}\nonumber \\&\qquad \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| {\tilde{c}}_{p_{2}\pm k}{\tilde{c}}_{p_{3}}\Psi \right\| ^{2}}\nonumber \\&\quad \le \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \sum _{p}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{S_{l}}(p)\left\| K_{l}e_{p_{4}}\right\| ^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\left( \max _{q\in L_{k}}\left| \left\langle e_{p_{1}},B_{k}e_{q}\right\rangle \right| ^{2}\right) }\nonumber \\&\qquad \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{S_{k}}(p)\Vert {\tilde{c}}_{p_{3}}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert ^{2}}\nonumber \\&\quad \le \Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{l}}\left\| K_{l}e_{p_{4}}\right\| ^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p_{1}},B_{k}e_{q}\right\rangle \right| ^{2}}\nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}^{2}}\,\Vert {\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \left\| {\mathcal {N}}_{E}\Psi \right\| . \end{aligned}$$
(4.55)

\(\square \)

4.3.3 Estimation of the double commutator terms

Finally we have the double commutator terms

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right] ,\nonumber \\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ^{*}\right] ^{*}{\tilde{c}}_{p_{3}},\nonumber \\&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] . \end{aligned}$$
(4.56)

An identity for the iterated commutators is obtained by applying the identity of equation (4.22) to itself: For any \(k,l\in {\mathbb {Z}}_{*}^{3}\), \(\varphi \in \ell ^{2}(L_{k})\), \(\psi \in \ell ^{2}(L_l)\) and \(p\in {\mathbb {Z}}_{*}^{3}\)

$$\begin{aligned} \left[ b_{k}(\varphi ),\left[ b_{l}\left( \psi \right) ,{\tilde{c}}_{p}^{*}\right] ^{*}\right]&={\left\{ \begin{array}{ll} -1_{L_l}(p+l)\left\langle e_{p+l},\psi \right\rangle \left[ b_{k}(\varphi ),{\tilde{c}}_{p+l}^{*}\right] &{} p\in B_{F}\\ 1_{L_l}(p)\left\langle e_{p},\psi \right\rangle \left[ b_{k}(\varphi ),{\tilde{c}}_{p-l}^{*}\right] &{} p\in B_{F}^{c} \end{array}\right. }\nonumber \\&={\left\{ \begin{array}{ll} -1_{L_k}(p+l)1_{L_l}(p+l)\left\langle \varphi ,e_{p+l}\right\rangle \left\langle e_{p+l},\psi \right\rangle {\tilde{c}}_{p+l-k} &{} p\in B_{F}\\ -1_{L_{k}}\left( p-l+k\right) 1_{L_l}(p)\left\langle \varphi ,e_{p-l+k}\right\rangle \left\langle e_{p},\psi \right\rangle {\tilde{c}}_{p-l+k} &{} p\in B_{F}^{c} \end{array}\right. }. \end{aligned}$$
(4.57)

The estimates are the following:

Proposition 4.11

For any collection of symmetric operators \((B_k)\) and \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right] \Psi \right\rangle \right| ,\\ \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ^{*}\right] ^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right| ,\\ \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] \Psi \right\rangle \right| , \end{aligned}$$

are all bounded by

$$\begin{aligned} Ck_F^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p}\Vert ^{2}}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

For these estimates we consider only the case \(S_{k}=L_{k}\) for the sake of clarity, i.e. we let

$$\begin{aligned} \left( p_{1},p_{2},p_{3},p_{4}\right) =\left( p,-p+l,-p+k,p\right) ; \end{aligned}$$
(4.58)

the case \(S_{k}=L_{k}-k\) can be handled by similar manipulations.

Using the identity of equation (4.57) we start by estimating (by the bound of Proposition 4.9)

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left| \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\right] \Psi \right\rangle \right| \nonumber \\&\quad =\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left| 1_{L_{k}}(p_{3}+l)1_{L_{l}}(p_{3}+l)\left\langle B_{k}e_{p_{1}},e_{p_{3}+l}\right\rangle \left\langle e_{p_{3}+l},K_{l}e_{p_{4}}\right\rangle \left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{3}+l-k}\Psi \right\rangle \right| \nonumber \\&\quad \le C\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}1_{L_{k}}(p_{3}+l)\left| \left\langle B_{k}e_{p_{1}},e_{p_{3}+l}\right\rangle \right| \frac{{\hat{V}}_{l}k_{F}^{-1}1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)}{\sqrt{\lambda _{k,p_{1}}+\lambda _{k,p_{2}+k}}\sqrt{\lambda _{l,p_{3}+l}+\lambda _{l,p_{4}}}}\left\langle \Psi ,{\tilde{c}}_{p_{2}}^{*}{\tilde{c}}_{p_{2}}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}\sum _{p\in L_{l}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(p)1_{L_{k}}(p_{3}+l)\left| \left\langle e_{p},h_{k}^{-\frac{1}{2}}B_{k}e_{p_{3}+l}\right\rangle \right| ^{2}} \nonumber \\&\qquad \cdot \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{1_{L_{l}}(p_{3}+l)}{\lambda _{l,p_{3}+l}}}\left\langle \Psi ,{\tilde{c}}_{-p+l}^{*}{\tilde{c}}_{-p+l}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}\sum _{p\in \left( L_{l}-l\right) }\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(p+l)1_{L_{k}}(p_{3})\left| \left\langle e_{p+l},h_{k}^{-\frac{1}{2}}B_{k}e_{p_{3}}\right\rangle \right| ^{2}}\left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sum _{p\in B_{F}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\sqrt{\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}1_{L_k}(p+l)1_{L_{k}}(p_{3})\left| \left\langle e_{p+l},h_{k}^{-\frac{1}{2}}B_{k}e_{p_{3}}\right\rangle \right| ^{2}}\left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$
(4.59)

where we used \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_{l}}(p_{3}+l)\lambda _{l,p_{3}+l}^{-1}\le \sum _{q\in L_{l}}\lambda _{l,q}^{-1}\le Ck_{F}\). From (4.57) we have

$$\begin{aligned}&\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p}^{*}\right] ^{*}\right] \nonumber \\&\quad =-1_{L_{l}}(p_{2}+k)1_{L_{k}}(p_{2}+k)\left\langle K_{l}e_{p_{4}},e_{p_{2}+k}\right\rangle \left\langle e_{p_{2}+k},B_{k}e_{p_{1}}\right\rangle {\tilde{c}}_{p_{2}+k-l} \nonumber \\&\quad =-1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)\left\langle K_{l}e_{p_{4}},e_{p_{3}+l}\right\rangle \left\langle e_{p_{2}+k},B_{k}e_{p_{1}}\right\rangle {\tilde{c}}_{p_{3}} \end{aligned}$$
(4.60)

so the second term can be similarly estimated as

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] ^{*}\right] ^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \right| \nonumber \\&\quad \le C\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\frac{{\hat{V}}_{l}k_{F}^{-1}1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)}{\sqrt{\lambda _{k,p_{1}}+\lambda _{k,p_{2}+k}}\sqrt{\lambda _{l,p_{3}+l}+\lambda _{l,p_{4}}}}\left| \left\langle e_{p_{2}+k},B_{k}e_{p_{1}}\right\rangle \right| \left\langle \Psi ,{\tilde{c}}_{p_{3}}^{*}{\tilde{c}}_{p_{3}}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{L_l}(p)\frac{{\hat{V}}_{l}^{2}}{\lambda _{l,p_{4}}}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{L_{k}}(p_{2}+k)\left| \left\langle e_{p_{2}+k},h_{k}^{-\frac{1}{2}}B_{k}e_{p_{1}}\right\rangle \right| ^{2}}\nonumber \\&\qquad \left\langle \Psi ,{\tilde{c}}_{-p+k}^{*}{\tilde{c}}_{-p+k}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{p\in B_{F}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{L_{k}-k}(p)\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\frac{1_{L_{l}}(p+k)}{\lambda _{l,p+k}}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p+k}\Vert \left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{p\in B_{F}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{1_{L_{l}}(p+k)}{\lambda _{l,p+k}}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p+k}\Vert ^{2}}\left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle . \end{aligned}$$
(4.61)

Finally, from (4.51) and (4.54) we see that \(\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] \) is equal to

$$\begin{aligned} 1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)\left\langle B_{k}e_{p_{1}},e_{p_{2}+k}\right\rangle \left\langle e_{p_{3}+l},K_{l}e_{p_{4}}\right\rangle {\tilde{c}}_{p_{3}+l}^{*}{\tilde{c}}_{p_{2}+k}, \end{aligned}$$
(4.62)

so we estimate

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in S_{k}\cap S_{l}}\left| \left\langle \Psi ,\left[ b_{l}\left( K_{l}e_{p_{4}}\right) ,{\tilde{c}}_{p_{3}}^{*}\right] ^{*}\left[ b_{k}\left( B_{k}e_{p_{1}}\right) ,{\tilde{c}}_{p_{2}}^{*}\right] \Psi \right\rangle \right| \nonumber \\&\quad \le C\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\frac{{\hat{V}}_{l}k_{F}^{-1}1_{L_{k}}(p_{2}+k)1_{L_{l}}(p_{3}+l)}{\sqrt{\lambda _{k,p_{1}}+\lambda _{k,p_{2}+k}}\sqrt{\lambda _{l,p_{3}+l}+\lambda _{l,p_{4}}}}\left| \left\langle B_{k}e_{p_{1}},e_{p_{2}+k}\right\rangle \right| \left\langle \Psi ,{\tilde{c}}_{p_{3}+l}^{*}{\tilde{c}}_{p_{2}+k}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{p\in B_{F}^{c}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}1_{L_{k}\cap L_{l}}(p)1_{L_{k}\cap L_{l}}(-p+k+l)\frac{{\hat{V}}_{l}}{\sqrt{\lambda _{l,p}}}\left| \left\langle e_{p},h_{k}^{-\frac{1}{2}}B_{k}e_{-p+k+l}\right\rangle \right| \nonumber \\&\qquad \cdot \left\langle \Psi ,{\tilde{c}}_{-p+k+l}^{*}{\tilde{c}}_{-p+k+l}\Psi \right\rangle \nonumber \\&\quad =Ck_{F}^{-1}\sum _{p\in B_{F}^{c}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}1_{L_{k}\cap L_{l}}(p+k+l)1_{L_{k}\cap L_{l}}(-p) \frac{{\hat{V}}_{l}}{\sqrt{\lambda _{l,p+k+l}}}\nonumber \\&\qquad \left| \left\langle e_{p+k+l},h_{k}^{-\frac{1}{2}}B_{k}e_{-p}\right\rangle \right| \left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-1}\sum _{p\in B_{F}^{c}}\sqrt{\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}1_{L_{k}}(p+k+l)1_{L_{k}}(-p)\left| \left\langle e_{p+k+l},h_{k}^{-\frac{1}{2}}B_{k}e_{-p}\right\rangle \right| ^{2}}\nonumber \\&\qquad \cdot \sqrt{\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\frac{1_{L_{l}}(p+k+l)}{\lambda _{l,p+k+l}}}\left\langle \Psi ,{\tilde{c}}_{-p}^{*}{\tilde{c}}_{-p}\Psi \right\rangle \nonumber \\&\quad \le Ck_{F}^{-\frac{1}{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\max _{p\in L_{k}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p}\Vert ^{2}}\sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle . \end{aligned}$$
(4.63)

\(\square \)

The \({\mathcal {E}}_{k}^{2}\) bound of Theorem 4.1 now follows:

Proposition 4.12

For any \(\Psi \in {\mathcal {H}}_{N}\) and \(t\in \left[ 0,1\right] \) it holds that

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left| \left\langle \Psi ,\left( {\mathcal {E}}_{k}^{2}(B_k(t)){-}\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_k(t))\psi _{\textrm{FS}}\right\rangle \right) \Psi \right\rangle \right| {\le } C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}^{3}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

Clearly

$$\begin{aligned} \max _{p\in L_{k}}\left\| B_{k}e_{p}\right\| ^{2}\le \sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2},\quad \max _{p\in L_{k}}\Vert h_{k}^{-\frac{1}{2}}B_{k}e_{p}\Vert ^{2}\le \Vert B_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2},\nonumber \\ \end{aligned}$$
(4.64)

for any \(B_{k}\), and as our estimate for \(B_{k}(t)\) in Theorem 3.1 is the same as that for \(A_{k}(t)\), the bounds

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\max _{q\in L_{k}}\left| \left\langle e_{p},B_{k}e_{q}\right\rangle \right| ^{2},\,k_{F}^{-1}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\Vert B_{k}h_{k}^{-\frac{1}{2}}\Vert _{\textrm{HS}}^{2}{\le } C\left( 1+\Vert {\hat{V}}\Vert _{\infty }^{4}\right) \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} \end{aligned}$$

follow exactly as those of Proposition 4.7. Insertion into the Propositions 4.8, 4.10 and 4.11 yields the claim. \(\square \)

4.4 Analysis of the exchange contribution

Finally we determine the leading order of the exchange contribution. To begin we derive a general formula for a quantity of the form \(\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_{k})\psi _{\textrm{FS}}\right\rangle \): We can write

$$\begin{aligned}&-2\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_{k})\psi _{\textrm{FS}}\right\rangle \nonumber \\&\quad =-\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}}\sum _{q\in L_{l}}\left\langle \psi _{\textrm{FS}},b_{k}(B_k e_p)\varepsilon _{-k,-l}(e_{-p};e_{-q})b_{l}^{*}(K_{l}e_{q})\psi _{\textrm{FS}}\right\rangle \nonumber \\&\quad =\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left\langle \psi _{\textrm{FS}},b_{k}(B_k e_p){\tilde{c}}_{-p+l}^{*}{\tilde{c}}_{-p+k}b_{l}^{*}\left( K_{l}e_{p}\right) \psi _{\textrm{FS}}\right\rangle \nonumber \\&\qquad +\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }\left\langle \psi _{\textrm{FS}},b_{k}\left( B_{k}e_{p+k}\right) {\tilde{c}}_{-p-l}^{*}{\tilde{c}}_{-p-k}b_{l}^{*}\left( K_{l}e_{p+l}\right) \psi _{\textrm{FS}}\right\rangle \nonumber \\&\quad =:A+B \end{aligned}$$
(4.65)

where, using equation (4.22) in the form

$$\begin{aligned} \left[ b_{l}\left( \psi \right) ,{\tilde{c}}_{p}^{*}\right] ={\left\{ \begin{array}{ll} -\sum _{q\in L_{l}}\delta _{p,q-l}\left\langle \psi ,e_{q}\right\rangle {\tilde{c}}_{q} &{} p\in B_{F}\\ \sum _{q\in \left( L_{l}-l\right) }\delta _{p,q+l}\left\langle \psi ,e_{q+l}\right\rangle {\tilde{c}}_{q} &{} p\in B_{F}^{c} \end{array}\right. }, \end{aligned}$$
(4.66)

the terms A and B are given by

$$\begin{aligned} A&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left\langle \psi _{\textrm{FS}},\left[ b_{k}(B_k e_p),{\tilde{c}}_{-p+l}^{*}\right] \left[ b_{l}\left( K_{l}e_{p}\right) ,{\tilde{c}}_{-p+k}^{*}\right] ^{*}\psi _{\textrm{FS}}\right\rangle \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in L_{k}\cap L_{l}}\left\langle \psi _{\textrm{FS}},\left( \sum _{q\in L_{k}}\delta _{-p+l,q-k}\left\langle B_{k}e_{p},e_{q}\right\rangle {\tilde{c}}_{q}\right) \right. \nonumber \\&\left. \left( \sum _{q'\in L_{l}}\delta _{-p+k,q'-l}\left\langle e_{q'},K_{l}e_{p}\right\rangle {\tilde{c}}_{q'}^{*}\right) \psi _{\textrm{FS}}\right\rangle \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{l}e_{p}\right\rangle \end{aligned}$$
(4.67)

and similarly

$$\begin{aligned} B&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }\left\langle \psi _{\textrm{FS}},\left[ b_{k}\left( B_{k}e_{p+k}\right) ,{\tilde{c}}_{-p-l}^{*}\right] \left[ b_{l}\left( K_{l}e_{p+l}\right) ,{\tilde{c}}_{-p-k}^{*}\right] ^{*}\psi _{\textrm{FS}}\right\rangle \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in \left( L_{k}-k\right) \cap \left( L_{l}-l\right) }\delta _{-p-q,k+l}\left\langle e_{p+k},B_{k}e_{q+k}\right\rangle \left\langle e_{q+l},K_{l}e_{p+l}\right\rangle . \end{aligned}$$
(4.68)

Although non-obvious, there holds the identity \(A=B\). To see this we rewrite both terms: First, for A, we note that the presence of the \(\delta _{p+q,k+l}\) makes the \(L_{l}\) of the summation \(p,q\in L_{k}\cap L_{l}\) redundant: For any \(p,q\in B_{F}^{c}\) there holds the equivalence

$$\begin{aligned} p,q\in L_{p+q-k}\Longleftrightarrow p,q\in L_{k} \end{aligned}$$
(4.69)

by the trivial identities

$$\begin{aligned} \left| p-k\right| =\left| q-\left( p+q-k\right) \right| ,\quad \left| q-k\right| =\left| p-\left( p+q-k\right) \right| , \end{aligned}$$
(4.70)

so A can be written as

$$\begin{aligned} A=\sum _{p,q\in L_{k}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\delta _{p+q,k+l}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{l}e_{p}\right\rangle =\sum _{p,q\in L_{k}}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{p+q-k}e_{p}\right\rangle .\nonumber \\ \end{aligned}$$
(4.71)

A similar observation applies to B: For any \(p,q\in B_{F}\) we likewise have

$$\begin{aligned} p,q\in \left( L_{-p-q-k}+p+q+k\right) \Longleftrightarrow p+k,q+k\in L_{p+q+k}\Longleftrightarrow p,q\in \left( L_{k}-k\right) \nonumber \\ \end{aligned}$$
(4.72)

so

$$\begin{aligned} B&=\sum _{p,q\in \left( L_{k}-k\right) }\sum _{l\in {\mathbb {Z}}_{*}^{3}}\delta _{-p-q,k+l}\left\langle e_{p+k},B_{k}e_{q+k}\right\rangle \left\langle e_{q+l},K_{l}e_{p+l}\right\rangle \nonumber \\&=\sum _{p,q\in \left( L_{k}-k\right) }\left\langle e_{p+k},B_{k}e_{q+k}\right\rangle \left\langle e_{-p-k},K_{-p-q-k}e_{-q-k}\right\rangle \nonumber \\&=\sum _{p,q\in L_{k}}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{p+q-k}e_{p}\right\rangle \end{aligned}$$
(4.73)

where we lastly used that the kernels \(K_{k}\) obey

$$\begin{aligned} \left\langle e_{-p},K_{-k}e_{-q}\right\rangle =\left\langle e_{p},K_{k}e_{q}\right\rangle =\left\langle e_{q},K_{k}e_{p}\right\rangle ,\quad k\in {\mathbb {Z}}_{*}^{3},\,p,q\in L_{k}. \end{aligned}$$
(4.74)

In all we thus have the identity

$$\begin{aligned} \left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}(B_{k})\psi _{\textrm{FS}}\right\rangle&=-\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{l}e_{p}\right\rangle \nonumber \\&=-\sum _{p,q\in L_{k}}\left\langle e_{p},B_{k}e_{q}\right\rangle \left\langle e_{q},K_{p+q-k}e_{p}\right\rangle . \end{aligned}$$
(4.75)

Our matrix element estimates of the last section now yield the following:

Proposition

(4.2) It holds that

$$\begin{aligned} \left| \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt-E_{\textrm{corr},\textrm{ex}}\right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\), where

$$\begin{aligned} E_{\textrm{corr},\textrm{ex}}=\frac{k_{F}^{-2}}{4\left( 2\pi \right) ^{6}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}}\frac{{\hat{V}}_{k}{\hat{V}}_{p+q-k}}{\lambda _{k,p}+\lambda _{k,q}}. \end{aligned}$$

Proof

Since all the one-body operators are real-valued we can drop the \(\textrm{Re}\left( \cdot \right) \) and apply the above identity for

$$\begin{aligned}&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt=\sum _{k\in {\mathbb {Z}}_{*}^{3}}2\left\langle \psi _{\textrm{FS}},{\mathcal {E}}_{k}^{2}\left( \int _{0}^{1}B_{k}(t)dt\right) \psi _{\textrm{FS}}\right\rangle \nonumber \\&\quad =2\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\left\langle e_{p},\left( \int _{0}^{1}B_{k}(t)dt\right) e_{q}\right\rangle \left\langle e_{q},\left( -K_{l}\right) e_{p}\right\rangle . \end{aligned}$$
(4.76)

Now, note that \(E_{\textrm{corr},\textrm{ex}}\) can be written as

$$\begin{aligned} E_{\textrm{corr},\textrm{ex}}=\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\frac{{\hat{V}}_{l}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\frac{1}{\lambda _{l,p}+\lambda _{l,q}} \end{aligned}$$
(4.77)

since, much as in Proposition 4.5, the \(\delta _{p+q,k+l}\) implies the following identity for the denominators:

$$\begin{aligned} \lambda _{l,p}+\lambda _{l,q}&=\frac{1}{2}\left( \left| p\right| ^{2}-\left| p-l\right| ^{2}\right) +\frac{1}{2}\left( \left| q\right| ^{2}-\left| q-l\right| ^{2}\right) \nonumber \\&=\frac{1}{2}\left( \left| p\right| ^{2}-\left| q-k\right| ^{2}\right) +\frac{1}{2}\left( \left| q\right| ^{2}-\left| p-k\right| ^{2}\right) =\lambda _{k,p}+\lambda _{k,q}. \end{aligned}$$
(4.78)

In conclusion we thus see that

$$\begin{aligned}&\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt-E_{\textrm{corr},\textrm{ex}}\nonumber \\&\quad =2\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\left( \left\langle e_{p},\left( \int _{0}^{1}B_{k}(t)dt\right) e_{q}\right\rangle -\frac{{\hat{V}}_{k}k_{F}^{-1}}{4\left( 2\pi \right) ^{3}}\right) \left\langle e_{q},\left( -K_{l}\right) e_{p}\right\rangle \nonumber \\&\qquad {+}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}{\cap } L_{l}}\delta _{p+q,k+l}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( \left\langle e_{q},\left( -K_{l}\right) e_{p}\right\rangle {-}\frac{{\hat{V}}_{l}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\frac{1}{\lambda _{l,p}+\lambda _{l,q}}\right) =:A{+}B. \end{aligned}$$
(4.79)

We estimate A and B. By the matrix element estimates of Theorem 3.1 we have that (using our freedom to replace \(\lambda _{l,p}+\lambda _{l,q}\) by \(\lambda _{k,p}+\lambda _{k,q}\))

$$\begin{aligned} \left| A\right|&\le C\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}\left( 1+{\hat{V}}_{k}\right) {\hat{V}}_{k}^{2}k_{F}^{-1}\frac{{\hat{V}}_{l}k_{F}^{-1}}{\lambda _{l,p}+\lambda _{l,q}}\nonumber \\&\le Ck_{F}^{-2}\left( 1+\Vert {\hat{V}}\Vert _{\infty }\right) \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\sum _{p\in L_{k}}\frac{1}{\sqrt{\lambda _{k,p}}}\sum _{q\in L_{k}}\frac{{\hat{V}}_{p+q-k}}{\sqrt{\lambda _{k,q}}}\nonumber \\&\le Ck_{F}^{-\frac{3}{2}}\left( 1+\Vert {\hat{V}}\Vert _{\infty }\right) \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\sum _{p\in L_{k}}\frac{1}{\sqrt{\lambda _{k,p}}}\nonumber \\&\le C\left( 1+\Vert {\hat{V}}\Vert _{\infty }\right) \sqrt{\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\left| k\right| ^{\frac{1}{2}}\min \,\{1,k_{F}^{\frac{3}{2}}\left| k\right| ^{-\frac{3}{2}}\} \end{aligned}$$
(4.80)

where we applied the inequality \(\sum _{q\in L_{k}}\lambda _{k,q}^{-1}\le Ck_{F}\) and also used that Proposition 3.11 implies that

$$\begin{aligned} \sum _{p\in L_{k}}\frac{1}{\sqrt{\lambda _{k,p}}}\le Ck_{F}^{\frac{3}{2}}\left| k\right| ^{\frac{1}{2}}\min \,\{1,k_{F}^{\frac{3}{2}}\left| k\right| ^{-\frac{3}{2}}\} \end{aligned}$$
(4.81)

for a \(C>0\) independent of all quantities. By Cauchy-Schwarz we can further estimate

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\left| k\right| ^{\frac{1}{2}}\min \,\{1,k_{F}^{\frac{3}{2}}\left| k\right| ^{-\frac{3}{2}}\}&\le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\left| k\right| \min \,\{1,k_{F}^{3}\left| k\right| ^{-3}\}}\nonumber \\&\le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$
(4.82)

for the bound of the statement. By similar estimation also

$$\begin{aligned} \left| B\right|\le & {} C\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{k}\cap L_{l}}\delta _{p+q,k+l}{\hat{V}}_{k}k_{F}^{-1}\frac{{\hat{V}}_{l}^{2}k_{F}^{-1}}{\lambda _{l,p}+\lambda _{l,q}}\\\le & {} C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\sum _{l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{l}^{2}\left| l\right| ^{\frac{1}{2}}\min \,\{1,k_{F}^{\frac{3}{2}}\left| l\right| ^{-\frac{3}{2}}\} \end{aligned}$$

and the claim follows likewise. \(\quad \square \)

5 Estimation of the Non-Bosonizable Terms and Gronwall Estimates

In this section we perform the final work which will allow us to conclude Theorem 1.1.

The main content of this section lies in the estimation of the non-bosonizable terms, by which we mean the cubic and quartic terms

$$\begin{aligned} {\mathcal {C}}&=\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\,\textrm{Re}\left( \left( B_{k}+B_{-k}^{*}\right) ^{*}D_{k}\right) ,\nonumber \\ {\mathcal {Q}}&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( D_{k}^{*}D_{k}-\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \right) . \end{aligned}$$
(5.1)

The cubic terms \({\mathcal {C}}\) will not present a big obstacle to us: As was first noted in [2] (in their formulation), the expectation value of these in fact vanish identically with respect to the type of trial state we will consider. The bulk of the work will thus be to estimate the quartic terms. We prove the following bounds:

Theorem 5.1

It holds that \({\mathcal {Q}}=G+{\mathcal {Q}}_{\textrm{LR}}+{\mathcal {Q}}_{\textrm{SR}}\) where for any \(\Psi \in {\mathcal {H}}_{N}\)

$$\begin{aligned} \left| \left\langle \Psi ,G\Psi \right\rangle \right|&\le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \\ \left| \left\langle \Psi ,{\mathcal {Q}}_{\textrm{LR}}\Psi \right\rangle \right|&\le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}^{2}\Psi \right\rangle \end{aligned}$$

and \(e^{{\mathcal {K}}}{\mathcal {Q}}_{\textrm{SR}}e^{-{\mathcal {K}}}={\mathcal {Q}}_{\textrm{SR}}+\int _{0}^{1}e^{t{\mathcal {K}}}\left( 2\,\textrm{Re}\left( {\mathcal {G}}\right) \right) e^{-t{\mathcal {K}}}dt\) for an operator \({\mathcal {G}}\) obeying

$$\begin{aligned} \left| \left\langle \Psi ,{\mathcal {G}}\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,\left( {\mathcal {N}}_{E}^{3}+1\right) \Psi \right\rangle , \end{aligned}$$

\(C>0\) being a constant independent of all quantities.

With these all the general bounds are established. As all our error estimates are with respect to \({\mathcal {N}}_{E}\) and powers thereof, it then only remains to control the effect which the transformation \(e^{{\mathcal {K}}}\) has on these. By a standard Gronwall-type argument this control will follow from the estimate of Proposition 2.4, and we then end the paper by concluding Theorem 1.1.

5.1 Analysis of the cubic terms

Expanding the \(\textrm{Re}\left( \cdot \right) \), the cubic terms are

$$\begin{aligned} {\mathcal {C}}=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \left( B_{k}^{*}+B_{-k}\right) D_{k}+D_{k}^{*}\left( B_{k}+B_{-k}^{*}\right) \right) . \end{aligned}$$
(5.2)

The operators \(B_{k}\) can be written simply as \(B_{k}=\sum _{p\in L_{k}}b_{k,p}\) in terms of the excitation operators \(b_{k,p}=c_{p-k}^{*}c_{p}\), whence it is easily seen that

$$\begin{aligned} \left[ {\mathcal {N}}_{E},B_{k}\right] =-B_{k},\quad \left[ {\mathcal {N}}_{E},B_{k}^{*}\right] =B_{k}^{*}. \end{aligned}$$
(5.3)

As a consequence, \(B_{k}\) maps the eigenspace \(\left\{ {\mathcal {N}}_{E}=M\right\} \) into \(\left\{ {\mathcal {N}}_{E}=M-1\right\} \) and \(B_{k}^{*}\) maps \(\left\{ {\mathcal {N}}_{E}=M\right\} \) into \(\left\{ {\mathcal {N}}_{E}=M+1\right\} \). Meanwhile, the operators \(D_{k}\) preserve the eigenspaces: Writing \(D_{k}=D_{1,k}+D_{2,k}\) for

$$\begin{aligned} D_{1,k}&=\mathrm {d\Gamma }\left( P_{B_{F}}e^{-ik\cdot x}P_{B_{F}}\right) =\sum _{p,q\in B_{F}}\delta _{p,q-k}c_{p}^{*}c_{q}=-\sum _{q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}\nonumber \\ D_{2,k}&=\mathrm {d\Gamma }\left( P_{B_{F}^{c}}e^{-ik\cdot x}P_{B_{F}^{c}}\right) =\sum _{p,q\in B_{F}^{c}}\delta _{p,q-k}c_{p}^{*}c_{q}=\sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p}^{*}{\tilde{c}}_{p+k} \end{aligned}$$
(5.4)

these annihilate and create one hole or excitation, respectively, whence \(\left[ {\mathcal {N}}_{E},D_{k}\right] =0=\left[ {\mathcal {N}}_{E},D_{k}^{*}\right] \).

It follows that \({\mathcal {C}}\) maps the eigenspace \(\left\{ {\mathcal {N}}_{E}=M\right\} \) into \(\left\{ {\mathcal {N}}_{E}=M-1\right\} \oplus \left\{ {\mathcal {N}}_{E}=M+1\right\} \). Decomposing \({\mathcal {H}}_{N}\) orthogonally as \({\mathcal {H}}_{N}={\mathcal {H}}_{N}^{\textrm{even}}\oplus {\mathcal {H}}_{N}^{\textrm{odd}}\) for

$$\begin{aligned} {\mathcal {H}}_{N}^{\textrm{even}}=\bigoplus _{m=0}^{\infty }\left\{ {\mathcal {N}}_{E}=2m\right\} ,\quad {\mathcal {H}}_{N}^{\textrm{odd}}=\bigoplus _{m=0}^{\infty }\left\{ {\mathcal {N}}_{E}=2m+1\right\} , \end{aligned}$$
(5.5)

we thus see that \({\mathcal {C}}\) maps each subspace into the other. On the other hand, since our transformation kernel \({\mathcal {K}}\) is of the form

$$\begin{aligned} {\mathcal {K}}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle \left( b_{l,p}b_{-l,-q}-b_{-l,-q}^{*}b_{l,p}^{*}\right) \end{aligned}$$
(5.6)

we note that \({\mathcal {K}}\) maps each \(\left\{ {\mathcal {N}}_{E}=M\right\} \) into \(\left\{ {\mathcal {N}}_{E}=M-2\right\} \oplus \left\{ {\mathcal {N}}_{E}=M+2\right\} \), hence \({\mathcal {K}}\) preserves \({\mathcal {H}}_{N}^{\textrm{even}}\) and \({\mathcal {H}}_{N}^{\textrm{odd}}\), and so too does the transformation \(e^{-{\mathcal {K}}}\). As any eigenstate \(\Psi \in {\mathcal {H}}_{N}\) of \({\mathcal {N}}_{E}\) is contained in either \({\mathcal {H}}_{N}^{\textrm{even}}\) or \({\mathcal {H}}_{N}^{\textrm{odd}}\), and these are orthogonal, we conclude the following:

Proposition 5.2

For any eigenstate \(\Psi \) of \({\mathcal {N}}_{E}\) it holds that

$$\begin{aligned} \left\langle e^{-{\mathcal {K}}}\Psi ,{\mathcal {C}}e^{-{\mathcal {K}}}\Psi \right\rangle =0. \end{aligned}$$

5.2 Analysis of the quartic terms

Now we consider the quartic terms

$$\begin{aligned} {\mathcal {Q}}=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}} \sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( D_{k}^{*}D_{k}-\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \right) . \end{aligned}$$
(5.7)

We begin by rewriting these: Recalling the decomposition \(D_{k}=D_{1,k}+D_{2,k}\) above, we calculate

$$\begin{aligned} D_{1,k}^{*}D_{1,k}&=\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{p-k}^{*}{\tilde{c}}_{p}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}=\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{p-k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}{\tilde{c}}_{p}\nonumber \\&\quad +\sum _{q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{q-k}^{*}{\tilde{c}}_{q-k}\nonumber \\&=\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{p-k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}{\tilde{c}}_{p}+\sum _{p\in B_{F}}1_{B_{F}}(q+k){\tilde{c}}_{q}^{*}{\tilde{c}}_{q} \end{aligned}$$
(5.8)

and similarly

$$\begin{aligned} D_{2,k}^{*}D_{2,k}&=\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p+k}^{*}{\tilde{c}}_{p}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}=\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p+k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}{\tilde{c}}_{p}\nonumber \\&\quad +\sum _{p\in B_{F}^{c}}1_{B_{F}^{c}}(p-k){\tilde{c}}_{p}^{*}{\tilde{c}}_{p}\nonumber \\&=\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p+k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}{\tilde{c}}_{p}+{\mathcal {N}}_{E}-\sum _{p\in B_{F}^{c}}1_{B_{F}}(p-k){\tilde{c}}_{p}^{*}{\tilde{c}}_{p}. \end{aligned}$$
(5.9)

For any \(k\in {\mathbb {Z}}_{*}^{3}\) we can likewise write \(\sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right) \) in the form

$$\begin{aligned} \sum _{p\in L_{k}}\left( c_{p}^{*}c_{p}+c_{p-k}c_{p-k}^{*}\right)&=\sum _{p\in B_{F}^{c}}1_{B_{F}}(p-k){\tilde{c}}_{p}^{*}{\tilde{c}}_{p}+\sum _{q\in B_{F}}1_{B_{F}^{c}}(q+k){\tilde{c}}_{q}^{*}{\tilde{c}}_{q}\nonumber \\&=\sum _{p\in B_{F}^{c}}1_{B_{F}}(p-k){\tilde{c}}_{p}^{*}{\tilde{c}}_{p}+{\mathcal {N}}_{E}-\sum _{q\in B_{F}}1_{B_{F}}(q+k){\tilde{c}}_{q}^{*}{\tilde{c}}_{q}. \end{aligned}$$
(5.10)

Noting that \(D_{1,k}=0\) for \(\left| k\right| >2k_{F}\), as then \(B_{F}\cap \left( B_{F}+k\right) =\emptyset \), we thus obtain the decomposition

$$\begin{aligned} {\mathcal {Q}}=G+{\mathcal {Q}}_{\textrm{LR}}+{\mathcal {Q}}_{\textrm{SR}} \end{aligned}$$
(5.11)

where G is the one-body operator

$$\begin{aligned} G=\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \sum _{q\in B_{F}}1_{B_{F}}(q+k){\tilde{c}}_{q}^{*}{\tilde{c}}_{q}-\sum _{p\in B_{F}^{c}}1_{B_{F}}(p-k){\tilde{c}}_{p}^{*}{\tilde{c}}_{p}\right) , \end{aligned}$$
(5.12)

the long-range terms \({\mathcal {Q}}_{\textrm{LR}}\) are given by

$$\begin{aligned} {\mathcal {Q}}_{\textrm{LR}}{=}\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\overline{B}}\left( 0,2k_{F}\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\left( \sum _{p,q\in B_{F}\cap \left( B_{F}{+}k\right) }{\tilde{c}}_{p-k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}{\tilde{c}}_{p}{+}D_{1,k}^{*}D_{2,k}+D_{2,k}^{*}D_{1,k}\right) \nonumber \\ \end{aligned}$$
(5.13)

and the short-range terms \({\mathcal {Q}}_{\textrm{SR}}\) are

$$\begin{aligned} {\mathcal {Q}}_{\textrm{SR}}=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p+k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}{\tilde{c}}_{p}. \end{aligned}$$
(5.14)

5.2.1 Estimation of G and \({\mathcal {Q}}_{\textrm{LR}}\)

G and the long-range terms are easily controlled: First, interchanging the summations we can write G as

$$\begin{aligned} G=\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{q\in B_{F}}\left( \sum _{k\in \left( B_{F}-q\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\right) {\tilde{c}}_{q}^{*}{\tilde{c}}_{q}-\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{p\in B_{F}^{c}}\left( \sum _{k\in \left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\right) {\tilde{c}}_{p}^{*}{\tilde{c}}_{p}\nonumber \\ \end{aligned}$$
(5.15)

from which it is obvious that G obeys

$$\begin{aligned} \pm G\le \max _{p\in {\mathbb {Z}}_{*}^{3}}\left( \frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{k\in \left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\right) {\mathcal {N}}_{E}. \end{aligned}$$
(5.16)

This implies the following:

Proposition 5.3

For any \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} \left| \left\langle \Psi ,G\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) independent of all quantities.

Proof

For any \(p\in {\mathbb {Z}}^{3}\) we estimate by Cauchy-Schwarz

$$\begin{aligned} \sum _{k\in \left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}&\le \sqrt{\sum _{k\in \left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\sqrt{\sum _{k\in \left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}}\min \left\{ \left| k\right| ,k_{F}\right\} ^{-1}}\nonumber \\&\le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\sqrt{\sum _{k\in B_{F}\backslash \left\{ 0\right\} }\left| k\right| ^{-1}+k_{F}^{-1}} \end{aligned}$$
(5.17)

where we lastly used that \(k\mapsto \min \left\{ \left| k\right| ,k_{F}\right\} ^{-1}\) is radially decreasing and that \(\left( B_{F}+p\right) \cap {\mathbb {Z}}_{*}^{3}\) contains at most \(\left| B_{F}\right| \) points. As it is well-known that \(\sum _{k\in {\overline{B}}\left( 0,R\right) \backslash \left\{ 0\right\} }\left| k\right| ^{-1}\le CR^{2}\) as \(R\rightarrow \infty \) the bound follows. \(\quad \square \)

\({\mathcal {Q}}_{\textrm{LR}}\) can be handled in a similar manner:

Proposition 5.4

For any \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} \left| \left\langle \Psi ,{\mathcal {Q}}_{\textrm{LR}}\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}^{2}\Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) independent of all quantities.

Proof

Consider the first term in the parenthesis of (5.13): For any \(k\in {\mathbb {Z}}_{*}^{3}\) we can estimate

$$\begin{aligned}&\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }\left| \left\langle \Psi ,{\tilde{c}}_{p-k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q-k}{\tilde{c}}_{p}\Psi \right\rangle \right| \le \sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }\left\| {\tilde{c}}_{q}{\tilde{c}}_{p-k}\Psi \right\| \left\| {\tilde{c}}_{q-k}{\tilde{c}}_{p}\Psi \right\| \nonumber \\&\quad \le \sqrt{\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }\left\| {\tilde{c}}_{q}{\tilde{c}}_{p-k}\Psi \right\| ^{2}}\sqrt{\sum _{p,q\in B_{F}\cap \left( B_{F}+k\right) }\left\| {\tilde{c}}_{q-k}{\tilde{c}}_{p}\Psi \right\| ^{2}}\le \left\langle \Psi ,{\mathcal {N}}_{E}^{2}\Psi \right\rangle . \end{aligned}$$
(5.18)

As e.g.

$$\begin{aligned} D_{1,k}^{*}D_{2,k}= & {} \sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }\sum _{q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{q-k}^{*}{\tilde{c}}_{q}{\tilde{c}}_{p}^{*}{\tilde{c}}_{p+k}\\= & {} \sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }\sum _{q\in B_{F}\cap \left( B_{F}+k\right) }{\tilde{c}}_{p}^{*}{\tilde{c}}_{q-k}^{*}{\tilde{c}}_{q}{\tilde{c}}_{p+k} \end{aligned}$$

the terms \(D_{1,k}^{*}D_{2,k}\) and \(D_{2,k}^{*}D_{1,k}\) can be handled similarly, whence

$$\begin{aligned} \left| \left\langle \Psi ,{\mathcal {Q}}_{\textrm{LR}}\Psi \right\rangle \right|\le & {} \frac{3k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( \sum _{k\in {\overline{B}}\left( 0,2k_{F}\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\right) \left\langle \Psi ,{\mathcal {N}}_{E}^{2}\Psi \right\rangle \\\le & {} C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,{\mathcal {N}}_{E}^{2}\Psi \right\rangle \end{aligned}$$

where \(\sum _{k\in {\overline{B}}\left( 0,2k_{F}\right) \cap {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\) was bounded as in equation (5.17). \(\quad \square \)

5.2.2 Analysis of \({\mathcal {Q}}_{\textrm{SR}}\)

Lastly we come to

$$\begin{aligned} {\mathcal {Q}}_{\textrm{SR}}=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }{\tilde{c}}_{p+k}^{*}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}{\tilde{c}}_{p}. \end{aligned}$$
(5.19)

Recall that the transformation \({\mathcal {K}}\) can be written as \({\mathcal {K}}=\tilde{{\mathcal {K}}}-\tilde{{\mathcal {K}}}^{*}\) for

$$\begin{aligned} \tilde{{\mathcal {K}}}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle b_{l,p}b_{-l,-q}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}b_{l}(K_{l}e_{q})b_{-l,-q}. \end{aligned}$$
(5.20)

To determine \(e^{{\mathcal {K}}}{\mathcal {Q}}_{\textrm{SR}}e^{-{\mathcal {K}}}\) we will need the commutator \(\left[ {\mathcal {K}},{\mathcal {Q}}_{\textrm{SR}}\right] =2\,\textrm{Re}\left( \left[ \tilde{{\mathcal {K}}},{\mathcal {Q}}_{\textrm{SR}}\right] \right) \). Noting that for any \(p\in B_{F}^{c}\) and \(l\in {\mathbb {Z}}_{*}^{3}\), \(q\in L_{l}\), we have

$$\begin{aligned} \left[ b_{l,q},{\tilde{c}}_{p}^{*}\right] =\left[ c_{q-l}^{*}c_{q},c_{p}^{*}\right] =\delta _{p,q}c_{q-l}^{*}=\delta _{p,q}{\tilde{c}}_{q-l}, \end{aligned}$$
(5.21)

we deduce (with the help of Lemma A.1) that

$$\begin{aligned} \left[ \tilde{{\mathcal {K}}},{\tilde{c}}_{p}^{*}\right]&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left( b_{l}(K_{l}e_{q})\left[ b_{-l,-q},{\tilde{c}}_{p}^{*}\right] +\left[ b_{l}(K_{l}e_{q}),{\tilde{c}}_{p}^{*}\right] b_{-l,-q}\right) \nonumber \\&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left( b_{l}(K_{l}e_{q})\left[ b_{-l,-q},{\tilde{c}}_{p}^{*}\right] +\left[ b_{l,q},{\tilde{c}}_{p}^{*}\right] b_{-l}(K_{-l}e_{-q})\right) \nonumber \\&=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left( b_{l}(K_{l}e_{q})\delta _{p,-q}{\tilde{c}}_{-q+l}+\delta _{p,q}{\tilde{c}}_{q-l}b_{-l}(K_{-l}e_{-q})\right) \nonumber \\&=\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\delta _{p,-q}b_{l}(K_{l}e_{q}){\tilde{c}}_{-q+l}=\sum _{l\in {\mathbb {Z}}_{*}^{3}}1_{L_{l}}(-p)b_{l}\left( K_{l}e_{-p}\right) {\tilde{c}}_{p+l}. \end{aligned}$$
(5.22)

Using this we conclude the following:

Proposition 5.5

It holds that \(e^{{\mathcal {K}}}{\mathcal {Q}}_{\textrm{SR}}e^{-{\mathcal {K}}}={\mathcal {Q}}_{\textrm{SR}}+\int _{0}^{1}e^{t{\mathcal {K}}}\left( 2\,\textrm{Re}\left( {\mathcal {G}}\right) \right) e^{-t{\mathcal {K}}}dt\) for

$$\begin{aligned} {\mathcal {G}}&=\frac{k_{F}^{-1}}{\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q){\tilde{c}}_{p}^{*}b_{l}(K_{l}e_{q}){\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}\\&\quad +\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(p)1_{L_l}(q)\left\langle K_{l}e_{q},e_{p}\right\rangle {\tilde{c}}_{p-l}{\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}. \end{aligned}$$

Proof

By the fundamental theorem of calculus

$$\begin{aligned} e^{{\mathcal {K}}}{\mathcal {Q}}_{\textrm{SR}}e^{-{\mathcal {K}}}={\mathcal {Q}}_{\textrm{SR}}+\int _{0}^{1}e^{t{\mathcal {K}}}\left[ {\mathcal {K}},{\mathcal {Q}}_{\textrm{SR}}\right] e^{-t{\mathcal {K}}}dt \end{aligned}$$
(5.23)

and as noted \(\left[ {\mathcal {K}},{\mathcal {Q}}_{\textrm{SR}}\right] =2\,\textrm{Re}\left( \left[ \tilde{{\mathcal {K}}},{\mathcal {Q}}_{\textrm{SR}}\right] \right) \). Using equation (5.22) we compute that \({\mathcal {G}}:=\left[ \tilde{{\mathcal {K}}},{\mathcal {Q}}_{\textrm{SR}}\right] \) is given by

$$\begin{aligned} {\mathcal {G}}&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }\sum _{q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }\left( {\tilde{c}}_{p}^{*}\left[ \tilde{{\mathcal {K}}},{\tilde{c}}_{q}^{*}\right] +\left[ \tilde{{\mathcal {K}}},{\tilde{c}}_{p}^{*}\right] {\tilde{c}}_{q}^{*}\right) {\tilde{c}}_{q+k}{\tilde{c}}_{p-k}\nonumber \\&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }\sum _{q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }1_{L_{l}}(-q){\tilde{c}}_{p}^{*}b_{l}\left( K_{l}e_{-q}\right) {\tilde{c}}_{q+l}{\tilde{c}}_{q+k}{\tilde{c}}_{p-k}\nonumber \\&\quad +\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }\sum _{q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }1_{L_{l}}(-p)b_{l}\left( K_{l}e_{-p}\right) {\tilde{c}}_{p+l}{\tilde{c}}_{q}^{*}{\tilde{c}}_{q+k}{\tilde{c}}_{p-k}\nonumber \\&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }\sum _{q\in B_{F}^{c}\cap \left( B_{F}^{c}-k\right) }1_{L_{l}}(-q)\left\{ b_{l}\left( K_{l}e_{-q}\right) ,{\tilde{c}}_{p}^{*}\right\} {\tilde{c}}_{q+l}{\tilde{c}}_{q+k}{\tilde{c}}_{p-k}\nonumber \\&=\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q)\left\{ b_{l}(K_{l}e_{q}),{\tilde{c}}_{p}^{*}\right\} {\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}, \end{aligned}$$
(5.24)

where we for the third inequality substituted \(p\rightarrow q\) and \(k\rightarrow -k\) in the second sum. By the identity of equation (4.22) the anti-commutator is given by

$$\begin{aligned} \left\{ b_{l}(K_{l}e_{q}),{\tilde{c}}_{p}^{*}\right\} =2\,{\tilde{c}}_{p}^{*}b_{l}(K_{l}e_{q})+1_{L_l}(p)\left\langle K_{l}e_{q},e_{p}\right\rangle {\tilde{c}}_{p-l} \end{aligned}$$
(5.25)

which is inserted into the previous equation for the claim. \(\quad \square \)

We bound the \({\mathcal {G}}\) operator as follows:

Proposition 5.6

For any \(\Psi \in {\mathcal {H}}_{N}\) it holds that

$$\begin{aligned} \left| \left\langle \Psi ,{\mathcal {G}}\Psi \right\rangle \right| \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\langle \Psi ,\left( {\mathcal {N}}_{E}^{3}+1\right) \Psi \right\rangle \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

Using Proposition 4.4 we estimate the sum of the first term of \({\mathcal {G}}\) as

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q)\left| \left\langle \Psi ,{\tilde{c}}_{p}^{*}b_{l}(K_{l}e_{q}){\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}\Psi \right\rangle \right| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q)\left\| b_{l}^{*}(K_{l}e_{q}){\tilde{c}}_{p}\Psi \right\| \left\| {\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}\Psi \right\| \nonumber \\&\quad \le \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q)\left\| K_{l}e_{q}\right\| \Vert {\tilde{c}}_{p}\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\Psi \Vert \left\| {\tilde{c}}_{p-k}{\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}\Psi \right\| \nonumber \\&\quad \le \left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left\| K_{l}e_{q}\right\| \sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{B_{F}^{c}+k}(q){\hat{V}}_{k}\Vert {\tilde{c}}_{-q+k}{\tilde{c}}_{-q+l}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left\| K_{l}e_{q}\right\| \left\| {\tilde{c}}_{-q+l}{\mathcal {N}}_{E}\Psi \right\| \nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\left( \sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}\right) \left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert . \end{aligned}$$
(5.26)

Now, the \(\left\| K_{k}\right\| _{\textrm{HS}}\) estimate of Theorem 3.1 and Cauchy-Schwarz lets us estimate

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\| K_{k}\right\| _{\textrm{HS}}\le & {} C\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\min \,\{1,k_{F}^{2}\left| k\right| ^{-2}\}\le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{\min \,\{1,k_{F}^{4}\left| k\right| ^{-4}\}}{\min \left\{ \left| k\right| ,k_{F}\right\} }}\\{} & {} \quad \times \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }, \end{aligned}$$

and

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{\min \,\{1,k_{F}^{4}\left| k\right| ^{-4}\}}{\min \left\{ \left| k\right| ,k_{F}\right\} }=\sum _{k\in B_{F}\backslash \left\{ 0\right\} }\frac{1}{\left| k\right| }+k_{F}^{3}\sum _{k\in {\mathbb {Z}}_{*}^{3}\backslash B_{F}}\frac{1}{\left| k\right| ^{4}}\le Ck_{F}^{2} \end{aligned}$$
(5.27)

for a constant \(C>0\) independent of all quantities, so in all the first term of \({\mathcal {G}}\) obeys

$$\begin{aligned}&\frac{k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(q)\left| \left\langle \Psi ,{\tilde{c}}_{p}^{*}b_{l}(K_{l}e_{q}){\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}\Psi \right\rangle \right| \nonumber \\&\quad \le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\left\| \left( {\mathcal {N}}_{E}+1\right) \Psi \right\| \Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert . \end{aligned}$$
(5.28)

Similarly, for the second term (using simply that \(\left\| {\tilde{c}}_{p-l}\right\| _{\textrm{Op}}=1\) at the beginning)

$$\begin{aligned}&\sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(p)1_{L_l}(q)\left| \left\langle K_{l}e_{q},e_{p}\right\rangle \left\langle \Psi ,{\tilde{c}}_{p-l}{\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}{\tilde{c}}_{p-k}\Psi \right\rangle \right| \nonumber \\&\quad \le \left\| \Psi \right\| \sum _{k,l\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}\sum _{p,q\in B_{F}^{c}\cap \left( B_{F}^{c}+k\right) }1_{L_l}(p)1_{L_l}(q)\left| \left\langle K_{l}e_{q},e_{p}\right\rangle \right| \left\| {\tilde{c}}_{p-k}{\tilde{c}}_{-q+l}{\tilde{c}}_{-q+k}\Psi \right\| \nonumber \\&\quad \le \left\| \Psi \right\| \sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{q\in L_{l}}\left\| K_{l}e_{q}\right\| \sum _{k\in {\mathbb {Z}}_{*}^{3}}1_{B_{F}^{c}+k}(q){\hat{V}}_{k}\Vert {\tilde{c}}_{-q+k}{\tilde{c}}_{-q+l}{\mathcal {N}}_{E}^{\frac{1}{2}}\Psi \Vert \nonumber \\&\quad \le \sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}}\left( \sum _{l\in {\mathbb {Z}}_{*}^{3}}\left\| K_{l}\right\| _{\textrm{HS}}\right) \left\| \Psi \right\| \Vert {\mathcal {N}}_{E}^{\frac{3}{2}}\Psi \Vert . \end{aligned}$$
(5.29)

\(\square \)

5.3 Gronwall estimates

We now establish control over the operators \(e^{{\mathcal {K}}}{\mathcal {N}}_{E}^{m}e^{-{\mathcal {K}}}\) for \(m=1,2,3\). Consider first the mapping \(t\mapsto e^{t{\mathcal {K}}}{\mathcal {N}}_{E}e^{-t{\mathcal {K}}}\): Noting that for any \(\Psi \in {\mathcal {H}}_{N}\)

$$\begin{aligned} \frac{d}{dt}\left\langle \Psi ,e^{t{\mathcal {K}}}\left( {\mathcal {N}}_{E}+1\right) e^{-t{\mathcal {K}}}\Psi \right\rangle =\left\langle \Psi ,e^{-t{\mathcal {K}}}\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] e^{-t{\mathcal {K}}}\Psi \right\rangle , \end{aligned}$$
(5.30)

Gronwall’s lemma implies that to bound \(e^{t{\mathcal {K}}}\left( {\mathcal {N}}_{E}+1\right) e^{-t{\mathcal {K}}}\) it suffices to control \(\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \) with respect to \({\mathcal {N}}_{E}+1\) itself. We determine the commutator: As \({\mathcal {K}}=\mathcal {{\tilde{K}}}-\mathcal {{\tilde{K}}}^{*}\) for

$$\begin{aligned} \tilde{{\mathcal {K}}}=\frac{1}{2}\sum _{l\in {\mathbb {Z}}_{*}^{3}}\sum _{p,q\in L_{l}}\left\langle e_{p},K_{l}e_{q}\right\rangle b_{l,p}b_{-l,-q} \end{aligned}$$
(5.31)

and \(\left[ b_{l,p},{\mathcal {N}}_{E}\right] =b_{l,p}\) it holds that \(\left[ \tilde{{\mathcal {K}}},{\mathcal {N}}_{E}\right] =2\,\tilde{{\mathcal {K}}}\), whence

$$\begin{aligned} \left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] =2\,\textrm{Re}\left( \left[ \tilde{{\mathcal {K}}},{\mathcal {N}}_{E}\right] \right) =2\,\tilde{{\mathcal {K}}}+2\,\tilde{{\mathcal {K}}}^{*}. \end{aligned}$$
(5.32)

The estimate of Proposition 2.4 immediately yields that

$$\begin{aligned} \pm \left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \le C\left( {\mathcal {N}}_{E}+1\right) \end{aligned}$$
(5.33)

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\), whence by Gronwall’s lemma

$$\begin{aligned} \left\langle \Psi ,e^{t{\mathcal {K}}}\left( {\mathcal {N}}_{E}+1\right) e^{-t{\mathcal {K}}}\Psi \right\rangle \le e^{C\left| t\right| }\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle \le C'\left\langle \Psi ,\left( {\mathcal {N}}_{E}+1\right) \Psi \right\rangle ,\quad \left| t\right| \le 1.\nonumber \\ \end{aligned}$$
(5.34)

This proves the bound for \({\mathcal {N}}_{E}\); for \({\mathcal {N}}_{E}^{2}\) we will as in [10] apply the following lemma:

Lemma 5.7

Let ABZ be given with \(A>0\), \(Z\ge 0\) and \(\left[ A,Z\right] =0\). Then if \(\pm \left[ A,\left[ A,B\right] \right] \le Z\) it holds that

$$\begin{aligned} \pm [A^{\frac{1}{2}},[A^{\frac{1}{2}},B]]\le \frac{1}{4}A^{-1}Z. \end{aligned}$$

The estimates are as follows:

Proposition 5.8

For any \(\Psi \in {\mathcal {H}}_{N}\) and \(\left| t\right| \le 1\) it holds that

$$\begin{aligned} \left\langle e^{-t{\mathcal {K}}}\Psi ,\left( {\mathcal {N}}_{E}^{m}+1\right) e^{-t{\mathcal {K}}}\Psi \right\rangle \le C\left\langle \Psi ,\left( {\mathcal {N}}_{E}^{m}+1\right) \Psi \right\rangle ,\quad m=1,2,3, \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

The case of \(m=1\) was proved above. For \(m=2\) it suffices to control \(\left[ {\mathcal {K}},{\mathcal {N}}_{E}^{2}\right] \) in terms of \({\mathcal {N}}_{E}^{2}+1\); by the identity \(\left\{ A,B\right\} =A^{\frac{1}{2}}BA^{\frac{1}{2}}+[A^{\frac{1}{2}},[A^{\frac{1}{2}},B]]\) we can write

$$\begin{aligned} \left[ {\mathcal {K}},{\mathcal {N}}_{E}^{2}\right]&=\left\{ {\mathcal {N}}_{E},\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \right\} =\left\{ {\mathcal {N}}_{E}+1,\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \right\} -2\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \nonumber \\&=\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}}+[\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}},[\left( {\mathcal {N}}_{E}+1\right) ^{\frac{1}{2}},\nonumber \\&\quad \times \left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] ]]-2\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \end{aligned}$$
(5.35)

and note that the commutator \(\left[ \tilde{{\mathcal {K}}},{\mathcal {N}}_{E}\right] =2\,\tilde{{\mathcal {K}}}\) also implies that

$$\begin{aligned} \left[ {\mathcal {N}}_{E},\left[ {\mathcal {N}}_{E},\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \right] \right] =4\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] , \end{aligned}$$
(5.36)

so by Lemma 5.7 and equation (5.33)

$$\begin{aligned} \pm \left[ {\mathcal {K}},{\mathcal {N}}_{E}^{2}\right] \le C\left( \left( {\mathcal {N}}_{E}+1\right) ^{2}+1+\left( {\mathcal {N}}_{E}+1\right) \right) \le C'\left( {\mathcal {N}}_{E}^{2}+1\right) . \end{aligned}$$
(5.37)

Similarly, for \({\mathcal {N}}_{E}^{3}\),

$$\begin{aligned} \left[ {\mathcal {K}},{\mathcal {N}}_{E}^{3}\right] =3\,{\mathcal {N}}_{E}\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] {\mathcal {N}}_{E}{+}\left[ {\mathcal {N}}_{E},\left[ {\mathcal {N}}_{E},\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \right] \right] =3\,{\mathcal {N}}_{E}\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] {\mathcal {N}}_{E}{+}4\left[ {\mathcal {K}},{\mathcal {N}}_{E}\right] \nonumber \\ \end{aligned}$$
(5.38)

implies that

$$\begin{aligned} \pm \left[ {\mathcal {K}},{\mathcal {N}}_{E}^{3}\right] \le C\left( {\mathcal {N}}_{E}\left( {\mathcal {N}}_{E}+1\right) {\mathcal {N}}_{E}+\left( {\mathcal {N}}_{E}+1\right) \right) \le C'\left( {\mathcal {N}}_{E}^{3}+1\right) \end{aligned}$$
(5.39)

hence the \(m=3\) bound. \(\quad \square \)

5.3.1 Conclusion of Theorem 1.1

We can now conclude:

Theorem

(1.1) It holds that

$$\begin{aligned} \inf \sigma \left( H_{N}\right) \le E_{F}+E_{\textrm{corr},\textrm{bos}}+E_{\textrm{corr},\textrm{ex}}+C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} },\quad k_{F}\rightarrow \infty , \end{aligned}$$

for a constant \(C>0\) depending only on \(\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\).

Proof

By the variational principle applied to the trial state \(e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\) we have by Proposition 1.2 and the Theorems 1.4, 3.1 and 5.1 that

$$\begin{aligned}&\inf \sigma \left( H_{N}\right) \le E_{F}+\left\langle \psi _{\textrm{FS}},e^{{\mathcal {K}}}\left( H_{\textrm{kin}}^{\prime }+\sum _{k\in {\mathbb {Z}}_{*}^{3}}\frac{{\hat{V}}_{k}k_{F}^{-1}}{2\left( 2\pi \right) ^{3}}\left( 2B_{k}^{*}B_{k}+B_{k}B_{-k}+B_{-k}^{*}B_{k}^{*}\right) \right) e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle \nonumber \\&\qquad +\left\langle \psi _{\textrm{FS}},e^{{\mathcal {K}}}{\mathcal {C}}e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle +\left\langle \psi _{\textrm{FS}},e^{{\mathcal {K}}}{\mathcal {Q}}e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle \nonumber \\&\quad =E_{F}+E_{\textrm{corr},\textrm{bos}}+\left\langle \psi _{\textrm{FS}},H_{\textrm{kin}}^{\prime }\psi _{\textrm{FS}}\right\rangle +2\sum _{k\in {\mathbb {Z}}_{*}^{3}}\left\langle \psi _{\textrm{FS}},Q_{1}^{k}\left( e^{-K_{k}}h_{k}e^{-K_{k}}-h_{k}\right) \psi _{\textrm{FS}}\right\rangle \nonumber \\&\qquad +\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}},\left( \varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )+2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{1}(A_k(t))\right) \right. \right. \nonumber \\&\qquad \left. \left. +2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle dt\nonumber \\&\qquad +\left\langle e^{{\mathcal {K}}}\psi _{\textrm{FS}},\left( G+{\mathcal {Q}}_{\textrm{LR}}\right) e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle +\left\langle \psi _{\textrm{FS}},{\mathcal {Q}}_{\textrm{SR}}\psi _{\textrm{FS}}\right\rangle \nonumber \\&\qquad +\int _{0}^{1}\left\langle e^{-t{\mathcal {K}}}\psi _{\textrm{FS}},\left( 2\,\textrm{Re}\left( {\mathcal {G}}\right) \right) e^{-t{\mathcal {K}}} \psi _{\textrm{FS}}\right\rangle dt\nonumber \\&\quad =E_{F}+E_{\textrm{corr},\textrm{bos}}+E_{\textrm{corr},\textrm{ex}}+\epsilon _{1}+\epsilon _{2}+\epsilon _{3}, \end{aligned}$$
(5.40)

where we also used that

$$\begin{aligned} H_{\textrm{kin}}^{\prime }\psi _{\textrm{FS}}=Q_{1}^{k}(A)\psi _{\textrm{FS}}={\mathcal {Q}}_{\textrm{SR}}\psi _{\textrm{FS}}=0 \end{aligned}$$
(5.41)

and that \(\left\langle \psi _{\textrm{FS}},e^{{\mathcal {K}}}{\mathcal {C}}e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle =0\) by Proposition 5.2. The errors \(\epsilon _{1}\), \(\epsilon _{2}\) and \(\epsilon _{3}\) obey

$$\begin{aligned} \epsilon _{1}= & {} \sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle \psi _{\textrm{FS}},2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))\right) \psi _{\textrm{FS}}\right\rangle dt-E_{\textrm{corr},\textrm{ex}}\nonumber \\\le & {} C\sum _{k\in {\mathbb {Z}}_{*}^{3}}\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$
(5.42)

by Proposition 4.2,

$$\begin{aligned} \epsilon _{2}&=\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}},\left( \varepsilon _{k}(\left\{ K_{k},B_{k}(t)\right\} )+2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{1}(A_k(t))\right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle dt\nonumber \\&\qquad +\sum _{k\in {\mathbb {Z}}_{*}^{3}}\int _{0}^{1}\left\langle e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}},\left( 2\,\textrm{Re}\left( {\mathcal {E}}_{k}^{2}(B_k(t))-\left\langle \psi _{F},{\mathcal {E}}_{k}^{2}(B_k(t))\psi _{F}\right\rangle \right) \right) e^{-\left( 1-t\right) {\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle dt\nonumber \\&\quad \le Ck_{F}^{-1}+C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} }\le C'\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$
(5.43)

by Theorem 4.1, and

$$\begin{aligned} \epsilon _{3}&=\left\langle e^{-{\mathcal {K}}}\psi _{\textrm{FS}},\left( G+{\mathcal {Q}}_{\textrm{LR}}\right) e^{-{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle +\int _{0}^{1}\left\langle e^{-t{\mathcal {K}}}\psi _{\textrm{FS}},\left( 2\,\textrm{Re}\left( {\mathcal {G}}\right) \right) e^{-t{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle dt\nonumber \\&\le C\sqrt{\sum _{k\in {\mathbb {Z}}_{*}^{3}}{\hat{V}}_{k}^{2}\min \left\{ \left| k\right| ,k_{F}\right\} } \end{aligned}$$
(5.44)

by Theorem 5.1, where we for the last error terms also used that

$$\begin{aligned} \left\langle e^{-t{\mathcal {K}}}\psi _{\textrm{FS}},\left( {\mathcal {N}}_{E}^{m}+1\right) e^{-t{\mathcal {K}}}\psi _{\textrm{FS}}\right\rangle \le C,\quad \left| t\right| \le 1,\,m=1,2,3, \end{aligned}$$
(5.45)

as follows by Proposition 5.8. \(\quad \square \)