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Abstract: We prove a rigorous upper bound on the correlation energy of interacting
fermions in the mean-field regime for a wide class of interaction potentials. Our result
covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–
Brueckner formula c1ρ log (ρ)+ c2ρ in the high density limit. We do this by refining the
analysis of our bosonization method to deal with singular potentials, and to capture the
exchange contribution which is absent in the purely bosonic picture.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
1.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1471
1.2 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 1474

2. The Bogolubov Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1480
3. Analysis of the One-Body Operators . . . . . . . . . . . . . . . . . . . . 1484

3.1 Matrix element estimates for K -quantities . . . . . . . . . . . . . . . 1485
3.2 Matrix element estimates for A(t) and B(t) . . . . . . . . . . . . . . 1487

4. Analysis of the Exchange Terms . . . . . . . . . . . . . . . . . . . . . . . 1491
4.1 Analysis of E1

k terms . . . . . . . . . . . . . . . . . . . . . . . . . . 1493

4.2 Analysis of E2
k terms . . . . . . . . . . . . . . . . . . . . . . . . . . 1499

4.3 Analysis of the exchange contribution . . . . . . . . . . . . . . . . . 1509
5. Estimation of the Non-Bosonizable Terms and Gronwall Estimates . . . . 1512

5.1 Analysis of the quartic terms . . . . . . . . . . . . . . . . . . . . . . 1514
5.2 Gronwall estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519

A. Diagonalization of the Bosonizable Terms . . . . . . . . . . . . . . . . . 1522

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04672-2&domain=pdf
http://orcid.org/0000-0002-9772-7323


1470 M. R. Christiansen, C. Hainzl, P. T. Nam

1. Introduction

Although interacting Fermi gases have been studied extensively from the beginning of
quantum mechanics, their rigorous understanding remains one of the major issues of
condensed matter physics. From first principles, a system of N fermions in R

3 can be
described by a Schrödinger equation inR3N , subject to the anti-symmetry condition be-
tween the variables due to Pauli’s exclusion principle. However, this fundamental theory
becomes very complex when N → ∞, leading to the need of various approximations.
Justifying these approximations is an important task of mathematical physics.

One of the most basic approximations for fermions is the Hartree–Fock (HF) theory.
In HF theory, the particles are assumed to be independent, namely the HF energy is
computed by restricting the consideration to Slater determinants. In spite of its simplicity,
the HF theory is used very successfully in computational physics and chemistry to
compute the ground state energy of atoms andmolecules. The accuracy of the HF energy
(in comparison to the full quantum energy) for large Coulomb systems was investigated
in the 1990s by Fefferman and Seco [12], Bach [1], and Graf and Solovej [15].

On the other hand, for the electron gas (e.g. jellium, a homogeneous electron gas
moving in a background of uniform positive charge), the HF theory is essentially trivial
in the high density limit since the HF energy only contains an exponentially small
correction to the energy of the Fermi state, the ground state of the non-interacting gas
[14]. Therefore, computing the correlation energy,1 namely the correction to the HF
energy, is a crucial task to understand the effect of the interaction. It was already noticed
by Wigner in 1934 [23] and confirmed by Heisenberg in 1947 [17] that it would be very
challenging to accomplish this task within perturbation theory due to the long-range
property of the Coulomb potential. Nevertheless, a remarkable attempt in this direction
was done by Macke in 1950 [18] when he used a partial resummation of the divergent
series to predict the leading order contribution c1ρ log (ρ) of the correlation energy (with
density ρ → ∞).

A cornerstone in the correlation analysis of the electron gas is the random phase
approximation (RPA) which was proposed by Bohm and Pines in the 1950s [7–9,19].
As an important consequence of the Bohm-Pines RPA theory, the electron gas could
be decoupled into collective plasmon excitations and quasi-electrons that interacted
via a screened Coulomb interaction. The latter fact justified the independent particle
approach commonly used for many-body fermion systems. The justification of the RPA
was a major question in condensed matter and nuclear physics in the late 1950s and
1960s. An important justification was given by Gell-Mann and Brueckner in 1957 [13]
when they formally derived the RPA from a resummation of Feynman diagrams where
each term separately diverges but the sum is convergent. More precisely, by considering
the diagrams corresponding to the interaction of pairs of fermions, one from inside and
one from outside the Fermi state, Gell-Mann and Brueckner were able to produce the
leading order contribution c1ρ log (ρ) + c2ρ of the correlation energy.

Soon after the achievement of Gell-Mann and Brueckner, Sawada [21] and Sawada–
Brueckner–Fukuda–Brout [22] proposed an alternative approach to the RPA where the
pairs of electrons are interpreted as bosons, leading to an effective Hamiltonian which
is quadratic in terms of the bosonic creation and annihilation operators. Note that within
the purely bosonic picture, quadratic Hamiltonians can be diagonalized by Bogolubov
transformations [6], and hence their spectra can be computed explicitly. Therefore, the

1 This name comes from the fact that Slater determinants are the least correlated wave functions under
Pauli’s exclusion principle.
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Hamiltonian approach in [21,22] is conceptually more transparent than the resumma-
tion method in [13]. Unfortunately the analysis in [21,22] only gives the contribution
c1ρ log (ρ) of the correlation energy because the exchange contribution of order ρ is
missed in the purely bosonic picture.

Recently, the bosonization argument in [21,22] has been revisited and made rigorous
in themean-field regimewith smooth interaction potentials [2–5,10,11,16]. In principle,
if the interaction is sufficiently weak, then the non-bosonizable terms of the interaction
energy are negligible, and the quasi-bosonic Hamiltonian can be analyzed with great
precision. In particular, the correlation energy has been successfully computed to the
leading order [2,3,5,10]. However, the boundedness of interaction potentials is crucial
for all of these works, and extending the analysis to the electron gas remains a very
interesting open question.

In the present paper, we will give the first rigorous upper bound to the correlation
energy of the electron gas in the mean-field regime. Our bound is consistent with the
Gell-Mann–Brueckner formula c1ρ log (ρ) + c2ρ for jellium in the high density limit
[13]. Although our trial state argument is inspired by the bosonizationmethod in [21,22],
we are able to capture correctly the exchange contribution by carefully distinguishing
the purely bosonic picture and the quasi-bosonic one. On the mathematical side, we will
use the general method in our recent work [10], but several new estimates are needed to
deal with the singularity of the potential. The matching lower bound in the mean-field
regime, as well as the corresponding result in the thermodynamic limit, remain open,
and we hope to be able to come back to these issues in the future.

On the technical side, the key idea of [10] is that while the bosonic property of
fermionic pairs holds only in an average sense, this weak bosonic property is sufficient
to extract correctly the correlation energy by implementing a quasi-bosonic Bogolubov
transformation. The main contribution of the present paper is to show that this approach
is also sufficient to extract the exchange correction to the purely bosonic computation.
On the other hand, another bosonization method has been proposed in [2], where the
bosonic property of fermionic pairs is strengthenedbyusing suitable patches on theFermi
sphere for the quasi-bosonic creation and annihilation operators, making the comparison
with the purely bosonic computation significantly easier. In fact, as explained in [5], the
approach in [2] can be extended to give the leading order of the correlation energy upper
bound for potentials satisfying

∑
V 2
k |k| < ∞. Although this condition only barely fails

for the Coulomb potential, there is a huge difference to the Coulomb case. While for∑
V 2
k |k| < ∞ the bosonic correlation contribution is of order kF and the exchange

correlation is of lower order o(kF ), for the Coulomb potential the exchange contribution
raises to the order kF , whereas the bosonic correlation behaves as kF log(kF ), which
makes the Coulomb casemuchmore challenging (here kF is the radius of the Fermi ball).
In particular, the method in [2,5] does not seem to capture the exchange contribution
which is indeed important for the Coulomb potential.

1.1. Main result. Let T3 = [0, 2π ]3 with periodic boundary conditions. Let V : T3 →
R be defined by

V (x) = 1

(2π)3

∑

k∈Z3∗

V̂ke
ik·x , Z

3∗ = Z
3\ {0} , (1.1)
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with Fourier coefficients satisfying

V̂k ≥ 0, V̂k = V̂−k,
∑

k∈Z3∗

V̂ 2
k < ∞. (1.2)

We implicitly assume that V̂0 = 0, or equivalently that the “background” has been
subtracted.

For kF > 0, let N = |BF | be the number of integer points in the Fermi ball BF =
B (0, kF ) ∩ Z

3 and consider the mean-field Hamiltonian

HN = −
N∑

i=1

�i + k−1
F

∑

1≤i< j≤N

V
(
xi − x j

)
(1.3)

on the fermionic spaceHN = ∧N hwith h = L2
(
T
3
)
.2 The leading order of the ground

state energy of HN is given by the Fermi state

ψFS =
∧

p∈BF

u p, u p (x) = (2π)−
3
2 eip·x . (1.4)

It is straightforward to find (see e.g. [10, Eqs. (1.10) and (1.20)])

EFS = 〈ψFS, HNψFS〉 =
∑

p∈BF

|p|2 + 1

2(2π)3

∑

k∈Z3∗

V̂ (k) (|Lk | − N ) (1.5)

where for every k ∈ Z
3∗, we denoted the lune associated to k by

Lk = (BF + k) \BF =
{
p ∈ Z

3 | |p − k| ≤ kF < |p|
}

. (1.6)

Our main result concerns the corrections to the ground state energy. For every k ∈ Z
3∗,

define

λk,p = 1

2

(
|p|2 − |p − k|2

)
, ∀p ∈ Lk . (1.7)

We will prove the following:

Theorem 1.1. As kF → ∞ it holds that

inf σ (HN ) ≤ EFS + Ecorr,bos + Ecorr,ex + C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

where

Ecorr,bos = 1

π

∑

k∈Z3∗

∫ ∞

0
F

⎛

⎝
V̂kk

−1
F

(2π)3

∑

p∈Lk

λk,p

λ2k,p + t2

⎞

⎠ dt, F (x) = log (1 + x) − x,

2 We consider spinless particles for simplicity. Including the spin only requires slight modifications of the
analysis.
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is the bosonic contribution and

Ecorr,ex = k−2
F

4 (2π)6

∑

k∈Z3∗

∑

p,q∈Lk

V̂k V̂p+q−k

λk,p + λk,q

is the exchange contribution, for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Some remarks on our result:
1. Consider the Coulomb potential, V̂k = g |k|−2 for a constant g > 0. Following

the analysis of [15], we find that

inf σ (HN ) = EFS + o
(
k3F

)
(1.8)

where EFS contains the kinetic energy of order k5F , the direct interaction energy of order
k5F and the exchange interaction energy of order k3F . Furthermore, it is straightforward
to adapt the proof in [14] to see that the difference between EFS and the HF energy is
exponentially small as kF → ∞. Therefore our result really concerns the correlation
energy, which we bound from above by

Ecorr,bos ∼ −kF log (kF ) and Ecorr,ex ∼ kF (1.9)

plus the error term of order
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } ∼ √

log (kF ). (1.10)

In fact, it is easy to verify (1.10) using
∑

|k|≤kF V̂ 2
k |k| ∼ log(kF ) and

∑
|k|≥kF V̂ 2

k ∼ k−1
F .

To see the leading order behavior Ecorr,ex ∼ kF in (1.9), one may use that λk,p ∼
|k|max{|k|, kF } (in an average sense) and that |Lk | ∼ k2F min {|k|, kF }. Moreover, from
the expansion

log(1 + x) − x ≈ −x2/2 + o(x3)x→0 (1.11)

we have

Ecorr,bos ≈ − 1

4(2π)6

∑

k∈Z3∗

(V̂kk
−1
F )2

2

π

∫ ∞

0

⎛

⎝
∑

p∈Lk

λk,p

λ2k,p + t2

⎞

⎠

2

dt

= − 1

4(2π)6

∑

k∈Z3∗

(V̂kk
−1
F )2

∑

p,q∈Lk

1

λk,p + λk,q
, (1.12)

and hence the asymptotic behavior Ecorr,bos ∼ −kF log(kF ) in (1.9) follows similarly.
Note that the correlation energy Ecorr,bos+Ecorr,ex in Theorem1.1 is exactly themean-

field analogue of the Gell-Mann–Brueckner formula c1ρ log (ρ)+ c2ρ for jellium in the
thermodynamic limit [13]. Indeed, substituting k−1

F V̂k → 4πe2 |k|−2 and (2π)3 →
the volume �, Ecorr,bos agrees with [22, Eq. (34)] which is equivalent with [13, Eq.
(19)] (accounting also for spin). In the thermodynamic limit, the right-hand side of
(1.12) always diverges, no matter if we have the mean-field scaling or not, but the full
expression on the left-hand side converges in either case.
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Furthermore, we also obtain the exchange contribution Ecorr,ex, which is the analogue
of [13, Eq. (9)], which is completely absent from the bosonic model of [22]. With the
same substitutions as above, the exchange contribution takes the form

Ecorr,ex = 2 · 1

4�2

∑

k∈Z3∗

∑

p,q∈Lk

4πe2

|k|2
4πe2

|p + q − k|2
1

1
2

(|p|2 + |p − k|2) + 1
2

(|q|2 + |q − k|2)

= 8π2e4

�2

∑

k∈Z3∗

∑

p,q∈Lk

1

|k|2 |p + q − k|2 k · (p + q − k)
(1.13)

which agrees with [20, Eq. (9.14)] (noting that we take m = 1/2).
2. If the potential satisfies

∑
k∈Z3∗ V̂

2
k |k| < ∞, and so is less singular than the

Coulomb potential, then the bosonic contribution Ecorr,bos is of order kF , while the
exchange contribution is o (kF ). In this case, the upper bound

inf σ (HN ) ≤ EFS + Ecorr,bos + o (kF ) (1.14)

is already known; see [10, Remark 1 after Theorem 1.3] and [5, Appendix A]. Under the
stronger condition

∑
V̂k |k| < ∞ the matching lower bound was established in [5,10]

(see also [2] and [3] for previous results on the upper and lower bounds, respectively,
when V̂k is finitely supported). In comparison, the Coulomb potential is much more
challenging to analyze, since it leads to an additional logarithmic factor in the bosonic
contribution, and lifts the exchange contribution to the order kF . On the mathematical
side, working with the Coulomb potential thus requires a substantial refinement of the
bosonization method compared to the existing works.

3.Although the case of the greatest physical interest is the Coulomb potential, our re-
sult covers a far greater class of singular potentials: Under the condition

∑
kZ3∗ V̂

2
k < ∞,

the error term
√∑

k∈Z3∗ V̂
2
k min {|k| , kF } is of order at most O

(√
kF

)
, and so Theo-

rem 1.1 is always a meaningful result.

1.2. Overview of the proof. We will construct a trial state by applying a quasi-bosonic
Bogolubov transformation to the Fermi state ψFS. We will follow the general formu-
lation of the bosonization method in [10]. We quickly recall this here for the reader’s
convenience, after which we explain the new components of the proof and the structure
of the rest of the paper.

Rewriting the Hamiltonian Wewill use the second quantization formalism in which we
associate to every plane wave state u p of equation (1.4) the creation and annihilation
operators c∗

p = a∗(u p) and cp = a(u p) on the fermionic Fock space. They obey the
canonical anti-commutation relations (CAR)

{
cp, cq

} =
{
c∗
p, c

∗
q

}
= 0,

{
cp, c

∗
q

}
= δp,q , p, q ∈ Z

3. (1.15)

The Hamiltonian HN of equation (1.3) can then be written as HN = Hkin + k−1
F Hint

where

Hkin =
∑

p∈Z3

|p|2 c∗
pcp, Hint = 1

2 (2π)3

∑

k∈Z3∗

∑

p,q∈Z3

V̂kc
∗
p+kc

∗
q−kcqcp. (1.16)
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Note that the Fermi state ψFS obeys (Bc
F denoting the complement of BF with respect

to Z3)

cpψFS = 0 = c∗
qψFS, p ∈ Bc

F , q ∈ BF , (1.17)

and so it follows by the CAR that the kinetic energy of the Fermi state is

〈ψFS, HkinψFS〉 =
∑

p∈BF

|p|2 . (1.18)

We define the localized kinetic operator H ′
kin by

H ′
kin = Hkin − 〈ψFS, HkinψFS〉 =

∑

p∈Bc
F

|p|2 c∗
pcp −

∑

p∈BF

|p|2 cpc∗
p

=
∑

p∈Bc
F

(
|p|2 − k2F

)
c∗
pcp +

∑

p∈BF

(
k2F − |p|2

)
cpc

∗
p, (1.19)

where we for the last identity used the “particle-hole symmetry”

NE :=
∑

p∈Bc
F

c∗
pcp =

∑

p∈BF

cpc
∗
p on HN . (1.20)

From the last identity of equation (1.19) it is clear that H ′
kin is non-negative.

We normal-order Hint with respect toψFS: Using the CAR and the fact that
∑

p∈Z3 c∗
p

cp = N = N onHN , it factorizes as

Hint = 1

2 (2π)3

∑

k∈Z3∗

V̂k

⎛

⎝

⎛

⎝
∑

p∈Z3

c∗
pcp+k

⎞

⎠

∗ ⎛

⎝
∑

q∈Z3

c∗
q−kcq

⎞

⎠ − N

⎞

⎠ . (1.21)

Decomposing for every k ∈ Z
3∗

∑

p∈Z3

c∗
p−kcp = Bk + B∗−k + Dk, Bk =

∑

p∈Lk

c∗
p−kcp, (1.22)

we can write

Hint = 1

2 (2π)3

∑

k∈Z3∗

V̂k
((
Bk + B∗−k

)∗ (
Bk + B∗−k

) − N
)

+
1

2 (2π)3

∑

k∈Z3∗

V̂k
(
2Re

((
Bk + B∗−k

)∗
Dk

)
+ D∗

k Dk
)
. (1.23)

Using the CAR again it is easy to compute that

[
Bk, B

∗
k

] = |Lk | −
∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
(1.24)
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whence (using also that V̂k = V̂−k)

Hint = − 1

2 (2π)3

∑

k∈Z3∗

V̂k (N − |Lk |) + 1

2 (2π)3

∑

k∈Z3∗

V̂k
(
2B∗

k Bk + Bk B−k + B∗−k B
∗
k

)

+
1

2 (2π)3

∑

k∈Z3∗

V̂k

⎛

⎝2Re
((
Bk + B∗−k

)∗
Dk

)
+ D∗

k Dk −
∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
⎞

⎠ .

(1.25)

Note that the first sum is finite as |Lk | = N for |k| > 2kF . It is easily verified that
DkψFS = D∗

kψFS = BkψFS = 0, so we deduce from this identity that

〈ψFS, HintψFS〉 = − 1

2 (2π)3

∑

k∈Z3∗

V̂k (N − |Lk |) (1.26)

and we summarize the calculations above in the following:

Proposition 1.2. It holds that

HN = EFS + H ′
kin +

∑

k∈Z3∗

V̂kk
−1
F

2 (2π)3

(
2B∗

k Bk + Bk B−k + B∗−k B
∗
k

)
+ C +Q

where EFS = 〈ψFS, HNψFS〉 and the cubic and quartic terms, C and Q, are defined by

C = k−1
F

(2π)3

∑

k∈Z3∗

V̂k Re
((
Bk + B∗−k

)∗
Dk

)
,

Q = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k

⎛

⎝D∗
k Dk −

∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
⎞

⎠ .

We will prove that the cubic and quartic terms are negligible, and so the main con-
tribution to the correlation energy comes from the bosonizable terms

Heff = H ′
kin +

∑

k∈Z3∗

V̂kk
−1
F

2 (2π)3

(
2B∗

k Bk + Bk B−k + B∗−k B
∗
k

)
. (1.27)

We will write these in terms of quasi-bosonic operators, which will lead us to define a
quasi-bosonic Bogolubov transformation that serves to effectively diagonalize them.

The quasi-bosonic quadraticHamiltonian Wedefine the excitation operators b∗
k,p, bk,p,

for k ∈ Z
3∗ and p ∈ Lk , by

bk,p = c∗
p−kcp, b∗

k,p = c∗
pcp−k . (1.28)

The name is due to the fact that b∗
k,p acts by annihilating a state with momentum p−k ∈

BF and creating a state with momentum p ∈ Bc
F , i.e. it excites the state p − k to the

state p.
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For the purpose of computations it is convenient to also introduce a basis-independent
notation for the quasi-bosonic operators. Consider for k ∈ Z

3∗ the auxilliary space

2(Lk), which we will consider only as a real vector space, with standard orthonormal
basis

(
ep

)
p∈Lk

. For any k ∈ Z
3∗ and ϕ ∈ 
2(Lk) we define the generalized excitation

operators bk(ϕ) and b∗
k (ϕ) by

bk(ϕ) =
∑

p∈Lk

〈
ϕ, ep

〉
bk,p, b∗

k (ϕ) =
∑

p∈Lk

〈
ep, ϕ

〉
b∗
k,p. (1.29)

Note that the assignments ϕ �→ bk(ϕ), b∗
k (ϕ) are both linear (as we only consider


2(Lk) as a real vector space). In this notation we simply have that bk
(
ep

) = bk,p.
A short calculation using the CAR shows that these operators are quasi-bosonic in the
following sense:

Lemma 1.3. For any k, l ∈ Z
3∗, ϕ ∈ 
2(Lk) and ψ ∈ 
2(Ll) it holds that

[bk(ϕ), bl (ψ)] = [
b∗
k (ϕ), b∗

l (ψ)
] = 0,

[
bk(ϕ), b∗

l (ψ)
] = δk,l 〈ϕ,ψ〉 + εk,l (ϕ;ψ) ,

where the exchange correction εk,l (ϕ;ψ) is given by

εk,l (ϕ;ψ) = −
∑

p∈Lk

∑

q∈Ll

〈
ϕ, ep

〉 〈
eq , ψ

〉 (
δp,qcq−l c

∗
p−k + δp−k,q−l c

∗
qcp

)
.

Note that in the purely bosonic picture the exchange correction is absent. In our
quasi-bosonic case, these corrections are small but non-zero; it will be important to keep
careful track of them as it is these that gives rise to the exchange contribution Ecorr,ex.

For any operators A, B on 
2(Lk), we define the associated quadratic operators
Qk

1(A), Qk
2(B) on HN by3

Qk
1(A) =

∑

p,q∈Lk

〈
ep, Aeq

〉
b∗
k,pbk,q =

∑

p∈Lk

b∗
k (Aep)bk,p (1.30)

and

Qk
2(B) =

∑

p,q∈Lk

〈
ep, Beq

〉 (
bk,pb−k,−q + b∗−k,−qb

∗
k,p

)

=
∑

p∈Lk

(
bk(Bep)b−k,−p + b∗−k,−pb

∗
k (Bep)

)
. (1.31)

Defining the operator Pk on 
2(Lk) by

Pk= |vk〉 〈vk | , vk=
√

V̂kk
−1
F

2 (2π)3

∑

p∈Lk

ep ∈ 
2(Lk), so that
〈
ep, Pkeq

〉 = V̂kk
−1
F

2 (2π)3
,

(1.32)

3 Note that these definitions differ slightly from those of [10]. The main change is the definition of Qk
1(A);

this operator is what was denoted Q̃k
1(A) in that paper.
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we can express the interaction part of the bosonizable terms as

∑

k∈Z3∗

V̂kk
−1
F

2 (2π)3

(
2B∗

k Bk + Bk B−k + B∗−k B
∗
k

) =
∑

k∈Z3∗

(
2 Qk

1(Pk) + Qk
2(Pk)

)

=
∑

k∈Z3∗

⎛

⎝2
∑

p,q∈Lk

V̂kk
−1
F

2 (2π)3
b∗
k,pbk,q +

∑

p,q∈Lk

V̂kk
−1
F

2 (2π)3

(
bk,pb−k,−q + b∗−k,−qb

∗
k,p

)
⎞

⎠

(1.33)

The localized kinetic operator H ′
kin cannot bewritten exactly in a quadratic quasi-bosonic

form, but due to the commutation relation
[
H ′
kin, b

∗
k,p

]
=

(
|p|2 − |p − k|2

)
b∗
k,p = 2λk,pb

∗
k,p (1.34)

(see [10, Eq. (1.76)]) and the quasi-bosonicity of the b∗
k,p operators, it is sensible to

consider it analogous to a quadratic operator of the form
∑

k∈Z3∗

∑

p∈Lk

2λk,pb
∗
k,pbk,p =

∑

k∈Z3∗

2 Qk
1(hk) (1.35)

where the operators hk on 
2(Lk) are simply defined by hkep = λk,pep. In all we thus
consider the bosonizable terms as being analogous to a quasi-bosonic quadratic operator
as

Heff ≈
∑

k∈Z3∗

(
2 Qk

1(hk + Pk) + Qk
2(Pk)

)
. (1.36)

The quasi-bosonic Bogolubov transformation If the quadratic Hamiltonian on the right-
hand side of equation (1.36)was exactly bosonic, it could bediagonalizedby aBogolubov
transformation. Motivated by this we define such a transformation in the quasi-bosonic
setting, while keeping careful track of the additional terms arising from the exchange
correction.

Let Kk : 
2(Lk) → 
2(Lk), k ∈ Z
3∗, be a collection of symmetric operators satisfying

〈
ep, Kkeq

〉 = 〈
e−p, K−ke−q

〉
, k ∈ Z

3∗, p, q ∈ Lk . (1.37)

Then we define the associated quasi-bosonic Bogolubov kernel K on HN by

K = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉 (
bl,pb−l,−q − b∗−l,−qb

∗
l,p

)

= 1

2

∑

l∈Z3∗

∑

q∈Ll

(
bl(Kleq)b−l,−q − b∗−l,−qb

∗
l (Kleq)

)
. (1.38)

It is obvious from the second equation that K is skew-symmetric; K thus generates a
unitary transformation eK : HN → HN - the quasi-bosonic Bogolubov transformation.

We consider the case
∑

k∈Z3∗ ‖Kk‖2HS < ∞, in which caseK is not only well-defined
but even bounded as an operator onHN , as we will prove in the next section.
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We choose the operators (Kk) such that eK would diagonalize the right-hand side of
equation (1.36) if it was exactly bosonic. As explained in [10, Sect. 3] the diagonalizing
kernel is

Kk = −1

2
log

(

h
− 1

2
k

(

h
1
2
k (hk + 2Pk) h

1
2
k

) 1
2

h
− 1

2
k

)

. (1.39)

Keeping careful track of the quasi-bosonic corrections, the action of eK on the bosoniz-
able terms are as follows:

Theorem 1.4. Let Heff be as in (1.27). Assume
∑

k∈Z3∗ V̂
2
k < ∞. Then eK is well-defined

and

eKHeffe
−K = Ecorr,bos + H ′

kin + 2
∑

k∈Z3∗

Qk
1(e

−Kk hke
−Kk − hk)

+
∑

k∈Z3∗

∫ 1

0
e(1−t)K (

εk({Kk, Bk(t)})+2Re
(E1

k (Ak(t))
)
+2Re

(E2
k (Bk(t))

))
e−(1−t)Kdt

where for any symmetric operators Ak, Bk : 
2(Lk) → 
2(Lk) we define

εk(Ak) = −
∑

p∈Lk

〈
ep, Akep

〉 (
c∗
pcp + cp−kc

∗
p−k

)
,

E1
k (Ak) =

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll
b∗
k (Akep)

{
εk,l(ep; eq), b∗−l(K−l e−q)

}
,

E2
k (Bk) = 1

2

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll

{
bk(Bkep),

{
ε−k,−l(e−p; e−q), b

∗
l (Kleq)

}}
,

and for t ∈ [0, 1] the operators Ak(t), Bk(t) : 
2(Lk) → 
2(Lk) are given by

Ak(t) = 1

2

(
etKk (hk + 2Pk) e

tKk + e−t Kk hke
−t Kk

)
− hk,

Bk(t) = 1

2

(
etKk (hk + 2Pk) e

tKk − e−t Kk hke
−t Kk

)
.

This result is essentially the same as [10, Proposition 5.7], except that we now do not
introduce a momentum cut-off and assume only that

∑
k∈Z3∗ V̂

2
k < ∞. For the readers

convenience, we include in Appendix A the proof of the identity of Theorem 1.4 - that
the condition

∑
k∈Z3∗ V̂

2
k < ∞ is sufficient to define eK is proved in the next section.

Outline of the paper Now we come to the main part of the paper. We will choose as our
trial state  = e−KψFS. As mentioned the cubic and quartic terms are negligible, so the
energy of our trial state energy is by Theorem 1.4, to leading order,

〈, HN〉 ≈ EFS + Ecorr,bos

+
∑

k∈Z3∗

∫ 1

0

〈
ψFS, e

(1−t)K
(
εk({Kk, Bk(t)}) + 2Re

(
E1
k (Ak(t))

)
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+2Re
(
E2
k (Bk(t))

))
e−(1−t)KψFS

〉
dt. (1.40)

The main task will thus be to extract the exchange contribution Ecorr,ex from this last
term. The outline of the paper is as follows:

In Sect. 2 we show that eK is well-defined by proving that K is bounded under the
condition

∑
k∈Z3∗ V̂

2
k < ∞. We do this by employing a type of higher-order fermionic

estimate, resulting in a bound of the form

± K ≤ C
√∑

k∈Z3∗

V̂ 2
k NE (1.41)

which will also be crucial in allowing us to control NE later.
In Sect. 3we establish various bounds on the one-body operators Kk , Ak(t) and Bk(t).

This is conceptually similar to the one-body analysis in our previous paper [10], but we
must refine several estimates in order to establish control using only the assumption that
∑

k∈Z3∗ V̂
2
k < ∞.

In Sect. 4 comes the main new work: We engage in a detailed study of the exchange
terms E1

k (Ak) and E2
k (Bk) so that we can extract Ecorr,ex from the last term of equation

(1.40), first in the form

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt, (1.42)

and then analyze this expression further to obtain the leading order of this, which is
precisely Ecorr,ex as given in Theorem 1.1.

Finally in Sect. 5 we control the non-bosonizable cubic and quartic terms, and bound
the number operator NE and its powers by a Gronwall argument. We end the paper by
concluding Theorem 1.1.

2. The Bogolubov Kernel

We consider the kernel K defined by (1.38). We prove the following:

Proposition 2.1. Let Kl : 
2(Ll) → 
2(Ll), l ∈ Z
3∗, be a collection of symmetric

operators. Then provided
∑

l∈Z3∗ ‖Kl‖2HS < ∞, the expression

K = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉 (
bl,pb−l,−q − b∗−l,−qb

∗
l,p

)

defines a bounded operator K : HN → HN , and for any ,� ∈ HN we have

|〈,K�〉| ≤ √
5
√∑

l∈Z3∗

‖Kl‖2HS
√〈, (NE + 1)〉 〈�, (NE + 1)�〉.
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Note that NE = ∑
p∈Bc

F
c∗
pcp = ∑

p∈BF
cpc∗

p ≤ |BF | = N on HN . Moreover, it was

shown in [10] (see also Theorem 3.1) that the kernels in (1.39) satisfy ‖Kk‖HS ≤ CV̂k ,
and hence the boundedness of K follows from the assumption

∑
k∈Z3∗ V̂

2
k < ∞. Let us

write

K = K̃ − K̃∗, K̃ = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉
bl,pb−l,−q , (2.1)

and focus on the boundedness of K. Since

2 K̃ =
∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉
bl,pc

∗−q+l c−q

=
∑

q∈Bc
F

⎛

⎝
∑

l∈Z3∗

∑

p∈Ll
1Ll (q)

〈
ep, Kleq

〉
bl,pc

∗−q+l

⎞

⎠ c−q , (2.2)

for any ,� ∈ HN we may estimate by the Cauchy–Schwarz inequality

|〈, K̃�〉| ≤ 1

2

√
√
√
√
√

∑

q∈Bc
F

∥
∥
∥
∥
∥
∥

∑

l∈Z3∗

∑

p∈Ll
1Ll (q)

〈
Kleq , ep

〉
c−q+lb∗

l,p

∥
∥
∥
∥
∥
∥

2
√ ∑

q∈Bc
F

∥
∥c−q�

∥
∥2

= 1

2

√
√
√
√
√

∑

q∈Bc
F

∥
∥
∥
∥
∥
∥

∑

l∈Z3∗

∑

p∈Ll
1Ll (q)

〈
Kleq , ep

〉
c−q+lb∗

l,p

∥
∥
∥
∥
∥
∥

2
√〈�,NE�〉. (2.3)

The operator appearing under the root can be written as
∑

l∈Z3∗

∑

p∈Ll
1Ll (q)

〈
Kleq , ep

〉
c−q+lb

∗
l,p =

∑

l∈Z3∗

∑

p∈Ll
1Ll (q)

〈
Kleq , ep

〉
c∗
pcp−l c−q+l ,

=
∑

p′∈Bc
F

∑

q ′,r ′∈BF

⎛

⎝
∑

l∈Z3∗

∑

p∈Ll
δp′,pδq ′,p−lδr ′,−q+l1Ll (q)

〈
Kleq , ep

〉
⎞

⎠ c∗
p′cq ′cr ′ . (2.4)

Let us estimate the following general expression, with some coefficients Ap,q,r ,
∑

p∈Bc
F

∑

q,r∈BF

Ap,q,r c
∗
pcqcr . (2.5)

A higher order fermionic estimate. Note that the Cauchy–Schwarz inequality trivially
implies that

∥
∥
∥
∑

Apcp
∥
∥
∥ ≤

∑
|Ap|‖cp‖ ≤

√
∑

|Ap|2
√

∑
‖cp‖2, (2.6)

but this is non-optimal for fermionic states. The “standard fermionic estimate” states
that

∥
∥
∥
∑

Apcp
∥
∥
∥ ,

∥
∥
∥
∑

Apc
∗
p

∥
∥
∥ ≤

√
∑∣

∣Ap
∣
∣2 ‖‖ , (2.7)
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which can be proved by appealing to the CAR as follows:
(∑

Apcp
)∗ (∑

Aqcq
)

≤
{(∑

Apcp
)∗

,
(∑

Aqcq
)}

=
∑

Ap Aq

{
c∗
p, cq

}

=
∑∣

∣Ap
∣
∣2 . (2.8)

One can imaginegeneralizing this to quadratic expressions of the form
∑

p,q Ap,qcpcq ,
but this fails since the CAR only yields a commutation relation for such expressions, and
not an anticommutation relation.However, for cubic expressions, such as

∑
p,q,r Ap,q,r c∗

p
cqcr , the CAR does yield an anticommutation relation, allowing the trick to be applied.
The anticommutator is of course not constant, but rather a combination of quadratic,
linear and constant expressions, but this still yields a reduction in “number operator
order”, which will be crucial for our estimation of eKNm

E e−K later on. We will need the
following basic anticommutator:

Lemma 2.2. For any p, p′ ∈ Bc
F and q, q ′, r, r ′ ∈ BF it holds that

{(
c∗
pcqcr

)∗
, c∗

p′cq ′cr ′
}

= δp,p′cq ′cr ′c∗
r c

∗
q + δq,q ′c∗

p′cr ′c∗
r cp + δr,r ′c∗

p′cq ′c∗
qcp

− δr,q ′c∗
p′cr ′c∗

qcp − δr,q ′c∗
p′cr ′c∗

qcp

− δq,q ′δr,r ′c∗
p′cp − δp,p′δr,r ′cq ′c∗

q − δp,p′δq,q ′cr ′c∗
r

+ δq,r ′δr,q ′c∗
p′cp + δp,p′δr,q ′cr ′c∗

q + δp,p′δq,r ′cq ′c∗
r

+ δp,p′δq,q ′δr,r ′ − δp,p′δq,r ′δr,q ′ .

We can now conclude the desired bound:

Proposition 2.3. Let Ap,q,r ∈ C for p ∈ Bc
F and q, r ∈ BF with

∑
p∈Bc

F

∑
q,r∈BF∣

∣Ap,q,r
∣
∣2 < ∞ be given. Then for any  ∈ HN

∥
∥
∥
∥
∥
∥

∑

p∈Bc
F

∑

q,r∈BF

Ap,q,r c
∗
pcqcr

∥
∥
∥
∥
∥
∥

2

≤ 5
∑

p∈Bc
F

∑

q,r∈BF

∣
∣Ap,q,r

∣
∣2 〈, (NE + 1)〉 .

Proof. As in the proof of the standard fermionic estimate (2.8), we have

∥
∥
∥
∥
∥
∥

∑

p∈Bc
F

∑

q,r∈BF

Ap,q,r c
∗
pcqcr

∥
∥
∥
∥
∥
∥

2

≤
∑

p,p′∈Bc
F

∑

q,q ′,r,r ′∈BF

Ap,q,r Ap′,q ′,r ′
〈
,

{(
c∗
pcqcr

)∗
, c∗

p′cq ′cr ′
}


〉
.

Hence, by the identity of Lemma 2.2, we bound the left-hand side by

∑

p,p′∈BcF

∑

q,q ′,r,r ′∈BF
Ap,q,r Ap′,q ′,r ′

〈
,

(
δp,p′cq ′cr ′c∗r c∗q + δq,q ′c∗p′cr ′c∗r cp + δr,r ′c∗p′cq ′c∗qcp

)


〉

−
∑

p,p′∈BcF

∑

q,q ′,r,r ′∈BF
Ap,q,r Ap′,q ′,r ′

〈
,

(
δr,q ′c∗p′cr ′c∗qcp + δr,q ′c∗p′cr ′c∗qcp

)


〉
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−
∑

p,p′∈BcF

∑

q,q ′,r,r ′∈BF
Ap,q,r Ap′,q ′,r ′

〈
,

(
δq,q ′δr,r ′c∗p′cp + δp,p′δr,r ′cq ′c∗q + δp,p′δq,q ′cr ′c∗r

)


〉

+
∑

p,p′∈BcF

∑

q,q ′,r,r ′∈BF
Ap,q,r Ap′,q ′,r ′

〈
,

(
δq,r ′δr,q ′c∗p′cp + δp,p′δr,q ′cr ′c∗q + δp,p′δq,r ′cq ′c∗r

)


〉

+
∑

p,p′∈BcF

∑

q,q ′,r,r ′∈BF
Ap,q,r Ap′,q ′,r ′

〈
,

(
δp,p′δq,q ′δr,r ′ − δp,p′δq,r ′δr,q ′

)


〉
. (2.9)

We estimate the different types of expressions appearing above. Firstly, by the standard
fermionic estimate (2.8),

∑

p,p′∈Bc
F

∑

q,q ′,r,r ′∈BF

Ap,q,r Ap′,q ′,r ′
〈
,

(
δp,p′cq ′cr ′c∗

r c
∗
q

)


〉
=

∑

p∈Bc
F

∥
∥
∥
∥
∥
∥

∑

q,r∈BF

Ap,q,r c
∗
r c

∗
q

∥
∥
∥
∥
∥
∥

2

≤
∑

p∈Bc
F

⎛

⎝
∑

q∈BF

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

r∈BF

Ap,q,r c
∗
r

⎞

⎠ c∗
q

∥
∥
∥
∥
∥
∥

⎞

⎠

2

≤
∑

p∈Bc
F

⎛

⎝
∑

q∈BF

√ ∑

r∈BF

∣
∣Ap,q,r

∣
∣2

∥
∥
∥c∗

q

∥
∥
∥

⎞

⎠

2

≤
∑

p∈Bc
F

∑

q,r∈BF

∣
∣Ap,q,r

∣
∣2

⎛

⎝
∑

q∈BF

∥
∥
∥c∗

q

∥
∥
∥
2

⎞

⎠ =
∑

p∈Bc
F

∑

q,r∈BF

∣
∣Ap,q,r

∣
∣2 〈,NE〉 (2.10)

and likewise for the other two terms on the first line of equation (2.9). For the terms on
the second line we similarly estimate
∣
∣
∣
∣
∣
∣

∑

p,p′∈Bc
F

∑

q,q ′,r,r ′∈BF

Ap,q,r Ap′,q ′,r ′
〈
,

(
δr,q ′c∗

p′cr ′c∗
qcp

)


〉
∣
∣
∣
∣
∣
∣

≤
∑

r∈BF

∥
∥
∥
∥
∥
∥

∑

p′∈Bc
F

∑

r ′∈BF

Ap′,r,r ′cp′c∗
r ′

∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥

∑

p∈Bc
F

∑

q∈BF

Ap,q,r c
∗
qcp

∥
∥
∥
∥
∥
∥

≤
∑

p∈Bc
F

∑

r,r ′∈BF

√ ∑

p′∈Bc
F

∣
∣Ap′,r,r ′

∣
∣2

∥
∥c∗

r ′
∥
∥

√ ∑

q∈BF

∣
∣Ap,q,r

∣
∣2

∥
∥cp

∥
∥

≤
∑

r∈BF

√ ∑

p∈Bc
F

∑

r ′∈BF

∣
∣Ap,r,r ′

∣
∣2

√ ∑

p∈Bc
F

∑

q∈BF

∣
∣Ap,q,r

∣
∣2

√ ∑

r ′∈BF

∥
∥c∗

r ′
∥
∥2

√ ∑

p∈Bc
F

∥
∥cp

∥
∥2

≤
∑

p∈Bc
F

∑

q∈BF

∣
∣Ap,q,r

∣
∣2 〈,NE〉 . (2.11)

The terms on the third line of equation (2.9) all factorize in a manifestly non-positive
fashion, and so can be dropped, while for the fourth line

∣
∣
∣
∣
∣
∣

∑

p,p′∈Bc
F

∑

q,q ′,r,r ′∈BF

Ap,q,r Ap′,q ′,r ′
〈
,

(
δq,r ′δr,q ′c∗

p′cp
)


〉
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

q,r∈BF

〈
∑

p′∈Bc
F

Ap′,r,qcp′,
∑

p∈Bc
F

Ap,q,r cp

〉∣
∣
∣
∣
∣
∣
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≤
∑

q,r∈BF

∥
∥
∥
∥
∥
∥

∑

p′∈Bc
F

Ap′,r,qcp′

∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥

∑

p∈Bc
F

Ap,q,r cp

∥
∥
∥
∥
∥
∥

≤
∑

q,r∈BF

√ ∑

p′∈Bc
F

∣
∣Ap′,r,q

∣
∣2

√ ∑

p∈Bc
F

∣
∣Ap,q,r

∣
∣2 ‖‖2 ≤

∑

p∈Bc
F

∑

q,r∈BF

∣
∣Ap,q,r

∣
∣2 ‖‖2 .

(2.12)

Lastly, the terms on the fifth line are seen to simply be constant and easily bounded by
∑

p∈Bc
F

∑
q,r∈BF

∣
∣Ap,q,r

∣
∣2, whence the proposition follows. ��

We can now conclude the following bound for K̃, which in turn implies Proposi-
tion 2.1.

Proposition 2.4. For any ,� ∈ HN it holds that

|〈, K̃�〉| ≤
√
5

2

√∑

l∈Z3∗

‖Kl‖2HS
√〈, (NE + 1) 〉 〈�,NE�〉.

Proof. By (2.3) and (2.4), combined with the estimate of Proposition 2.3, we can bound

|〈, K̃�〉| ≤
√
5

2

√
√
√
√
√

∑

q∈Bc
F

∑

p′∈Bc
F

∑

q ′,r ′∈BF

∣
∣
∣
∣
∣
∣

∑

l∈Z3∗

∑

p∈Ll
δp′,pδq ′,p−lδr ′,−q+l1Ll (q)

〈
Kleq , ep

〉
∣
∣
∣
∣
∣
∣

2

· √〈, (NE + 1) 〉 〈�,NE�〉. (2.13)

The sum inside the first square root is exactly equal to
∑

l∈Z3∗ ‖Kl‖2HS.

3. Analysis of the One-Body Operators

In this section we analyze the operators Kk , Ak(t) and Bk(t) which appear in Theorem
1.4, obtaining the following:

Theorem 3.1. For any k ∈ Z
3∗ it holds that

‖Kk‖HS ≤ CV̂k min {1, k2F |k|−2}.
Moreover, for all p, q ∈ Lk and t ∈ [0, 1],

∣
∣
〈
ep, Kkeq

〉∣
∣ ≤ C

V̂kk
−1
F

λk,p + λk,q
,

∣
∣
∣
∣
∣

〈
ep, (−Kk) eq

〉 − V̂kk
−1
F

2 (2π)3
1

λk,p + λk,q

∣
∣
∣
∣
∣
≤ C

V̂ 2
k k

−1
F

λk,p + λk,q
,

∣
∣
〈
ep, Ak(t)eq

〉∣
∣ ,

∣
∣
〈
ep, Bk(t)eq

〉∣
∣ ≤ C

(
1 + V̂ 2

k

)
V̂kk

−1
F ,

∣
∣
〈
ep, {Kk, Bk(t)} eq

〉∣
∣ ≤ C

(
1 + V̂ 2

k

)
V̂ 2
k k

−1
F ,
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∣
∣
∣
∣
∣

〈

ep,

(∫ 1

0
Bk(t)dt

)

eq

〉

− V̂kk
−1
F

4 (2π)3

∣
∣
∣
∣
∣
≤ C

(
1 + V̂k

)
V̂ 2
k k

−1
F ,

for a constant C > 0 independent of all relevant quantities.

The analysis of this section is similar to that of [10, Sect. 7], but compared to that
section, the estimates of this section are considerably more precise: We quantify the
error of the upper bound on

〈
ep, (−Kk) eq

〉
, obtain elementwise estimates for Ak(t) and

Bk(t) (rather than only estimates for the norm ‖·‖∞,2 as in [10]), and determine the

leading term of the operator
∫ 1
0 Bk(t)dt which will be needed to extract the exchange

contribution in the next section.

3.1. Matrix element estimates for K -quantities. To ease the notation we will abstract
the problem slightly: Instead of 
2(Lk) we consider a general n-dimensional Hilbert
space (V, 〈·, ·〉), let h : V → V be a positive self-adjoint operator on V with eigenbasis
(xi )ni=1 and eigenvalues (λi )

n
i=1, and let v ∈ V be any vector such that 〈xi , v〉 ≥ 0 for

all 1 ≤ i ≤ n, and let Pw (·) = 〈w, ·〉 w be the projection onto w ∈ V . Theorem 3.1 will
then be obtained at the end by insertion of the particular operators hk and Pk .

We define K : V → V by

K=−1

2
log

(

h− 1
2

(
h

1
2 (h + 2Pv) h

1
2

) 1
2
h− 1

2

)

=−1

2
log

(

h− 1
2

(
h2 + 2P

h
1
2 v

) 1
2
h− 1

2

)

.

(3.1)

As
(
h2 + 2P

h
1
2 v

) 1
2 ≥ h we see that K ≤ 0. In [10, Sect. 7.2] we proved the following

result.

Proposition 3.2. For all 1 ≤ i, j ≤ n it holds that

2

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi+λ j
≤

〈
xi ,

(
e−2K−1

)
x j

〉
,
〈
xi ,

(
1 − e2K

)
x j

〉
≤2

〈xi , v〉 〈
v, x j

〉

λi+λ j
.

Below itwill bemore convenient to consider the hyperbolic functions sinh (−2K ) and
cosh (−2K ) rather than e−2K and e2K . The previous proposition implies the following
for these operators:

Corollary 3.3. For any 1 ≤ i, j ≤ n it holds that

〈
xi , sinh (−2K ) x j

〉 ≤ 2
〈xi , v〉 〈

v, x j
〉

λi + λ j
,

〈
xi , (cosh (−2K ) − 1) x j

〉 ≤ 2
〈
v, h−1v

〉

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
.

Proof. These bounds follow from Proposition 3.2 and the identities

sinh (−2K ) = 1

2

((
e−2K − 1

)
+

(
1 − e2K

))
,

cosh (−2K ) − 1 = 1

2

((
e−2K − 1

)
−

(
1 − e2K

))
. (3.2)

��
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Nowwe extend our elementwise estimates tomore general operators. These estimates
are similar to those of Proposition 7.10 of [10], but more precise. First we consider K
itself:

Proposition 3.4. For any 1 ≤ i, j ≤ n it holds that

1

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
≤ 〈

xi , (−K ) x j
〉 ≤ 〈xi , v〉 〈

v, x j
〉

λi + λ j
.

Proof. From the identity

− x = 1

2

∞∑

m=1

1

m

(
1 − e2x

)m
, x ≤ 0, (3.3)

which follows by the Mercator series, we thus have that −K = 1
2

∑∞
m=1

1
m

(
1 − e2K

)m
.

Noting that Proposition 3.2 in particular implies that
〈
xi ,

(
1 − e2K

)
x j

〉 ≥ 0 for all

1 ≤ i, j ≤ n, whence also
〈
xi ,

(
1 − e2K

)m
x j

〉
≥ 0 for any m ∈ N, we may estimate

〈
xi , (−K ) x j

〉 = 1

2

∞∑

m=1

1

m

〈
xi ,

(
1 − e2K

)m
x j

〉
≥ 1

2

〈
xi ,

(
1 − e2K

)
x j

〉

≥ 1

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
(3.4)

which is the lower bound. This similarly implies that
〈
xi , (−K )m x j

〉 ≥ 0 for all 1 ≤
i, j ≤ n, m ∈ N, so the upper bound now also follows from Proposition 3.2 by noting
that

〈xi , v〉 〈
v, x j

〉

λi + λ j
≥1

2

〈
xi ,

(
e−2K − 1

)
x j

〉
=1

2

∞∑

m=1

1

m!
〈
xi , (−2K )m x j

〉≥ 〈
xi , (−K ) x j

〉
.

(3.5)

The proof of Proposition 3.4 is complete. ��
The fact that

〈
xi , (−K )m x j

〉 ≥ 0 for all 1 ≤ i, j ≤ n, m ∈ N, has the important
consequence that for any such i and j , the functions

t �→ 〈
xi , sinh (−t K ) x j

〉
,
〈
xi , (sinh (−t K ) + t K ) x j

〉
,
〈
xi , (cosh (−t K ) − 1) x j

〉

(3.6)

are non-negative and convex for t ∈ [0,∞), as follows by considering the Taylor ex-
pansions of the operators involved. This allows us to extend the bounds of Corollary 3.3
to arbitrary t ∈ [0, 1]:

Proposition 3.5. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

1

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
t ≤ 〈

xi , sinh (−t K ) x j
〉 ≤ 〈xi , v〉 〈

v, x j
〉

λi + λ j
t,
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0 ≤ 〈
xi , (cosh (−t K ) − 1) x j

〉 ≤
〈
v, h−1v

〉

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
,

∣
∣
∣
〈
xi ,

(
etK − 1

)
x j

〉∣
∣
∣ ≤ 〈xi , v〉 〈

v, x j
〉

λi + λ j
.

Proof. By the noted convexity we immediately conclude the upper bounds

〈
xi , sinh (−t K ) x j

〉 ≤ t

2

〈
xi , sinh (−2K ) x j

〉 ≤ 〈xi , v〉 〈
v, x j

〉

λi + λ j
t

〈
xi , (cosh (−t K )−1) x j

〉≤ t

2

〈
xi , (cosh (−2K )−1) x j

〉 ≤
〈
v, h−1v

〉

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j

(3.7)

and by non-negativity of
〈
xi , (sinh (−t K ) + t K ) x j

〉
and Proposition 3.4, the lower

bound

〈
xi , sinh (−t K ) x j

〉 ≥ 〈
xi , (−t K ) x j

〉 ≥ 1

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
t. (3.8)

Lastly we can apply the non-negativity of the hyperbolic operators to conclude the bound
for etK − 1 as

∣
∣
∣
〈
xi ,

(
etK − 1

)
x j

〉∣
∣
∣ = ∣

∣
〈
xi , ((cosh (−t K ) − 1) − sinh (−t K )) x j

〉∣
∣

≤ max
{〈
xi , (cosh (−t K ) − 1) x j

〉
,
〈
xi , sinh (−t K ) x j

〉} ≤ 〈xi , v〉 〈
v, x j

〉

λi + λ j
. (3.9)

��

3.2. Matrix element estimates for A(t)and B(t). Wenowconsider operators A(t), B(t) :
V → V defined by

A(t) = 1

2

(
etK (h + 2Pv) e

tK + e−t K he−t K
)

− h,

B(t) = 1

2

(
etK (h + 2Pv) e

tK − e−t K he−t K
)

, (3.10)

for t ∈ [0, 1]. We decompose these as

A(t) = Ah(t) + etK Pve
tK , B(t) = (1 − t) Pv + Bh(t) + etK Pve

tK − Pv (3.11)

with

CK (t) = cosh (−t K ) − 1, SK (t) = sinh (−t K ) ,

Ah(t) = cosh (−t K ) h cosh (−t K ) + sinh (−t K ) h sinh (−t K ) − h

= {h,CK (t)} + SK (t)h SK (t) + CK (t)h CK (t),

Bh(t) = − sinh (−t K ) h cosh (−t K ) − cosh (−t K ) h sinh (−t K ) + t Pv

= t Pv − {h, SK (t)} − SK (t)h CK (t) − CK (t)h SK (t). (3.12)

We begin by estimating the etK PvetK terms:
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Proposition 3.6. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that
∣
∣
∣
〈
xi ,

(
etK Pve

tK − Pv

)
x j

〉∣
∣
∣ ≤

(
2 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
.

Proof. Writing

etK Pve
tK − Pv =

{
Pv, e

tK − 1
}
+

(
etK − 1

)
Pv

(
etK − 1

)
(3.13)

we see that
〈
xi ,

(
etK Pve

tK − Pv

)
x j

〉
= 〈xi , v〉

〈(
etK − 1

)
v, x j

〉
+

〈
xi ,

(
etK − 1

)
v
〉 〈

v, x j
〉

+
〈
xi ,

(
etK − 1

)
v
〉 〈(

etK − 1
)

v, x j
〉
. (3.14)

Now, by Proposition 3.5 we can for any 1 ≤ i ≤ n estimate

∣
∣
∣
〈
xi ,

(
etK − 1

)
v
〉∣
∣
∣ =

∣
∣
∣
∣
∣
∣

n∑

j=1

〈
xi ,

(
etK − 1

)
x j

〉 〈
x j , v

〉
∣
∣
∣
∣
∣
∣
≤

n∑

j=1

〈xi , v〉 〈
v, x j

〉

λi + λ j

〈
x j , v

〉

≤ 〈xi , v〉
n∑

j=1

∣
∣
〈
x j , v

〉∣
∣2

λ j
= 〈xi , v〉

〈
v, h−1v

〉
(3.15)

whence the claim follows. ��
Note that for

〈
xi , etK PvetK x j

〉
this in particular implies the bound

∣
∣
∣
〈
xi , e

tK Pve
tK x j

〉∣
∣
∣ ≤

(
1 +

〈
v, h−1v

〉)2 〈xi , v〉 〈
v, x j

〉
. (3.16)

We now consider Ah(t) and Bh(t):

Proposition 3.7. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that
∣
∣
〈
xi , Ah(t)x j

〉∣
∣ ,

∣
∣
〈
xi , Bh(t)x j

〉∣
∣ ≤ 4

〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
.

Proof. The estimates of Proposition 3.5 imply that
∣
∣
〈
xi , {h,CK (t)} x j

〉∣
∣ = (

λi + λ j
) ∣
∣
〈
xi ,CK (t)x j

〉∣
∣

≤ (
λi + λ j

)
〈
v, h−1v

〉

1 + 2
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉

λi + λ j
≤

〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
, (3.17)

and

∣
∣
〈
xi , SK (t)h SK (t)x j

〉∣
∣ =

∣
∣
∣
∣
∣

n∑

k=1

λk 〈xi , SK (t)xk〉
〈
xk, SK (t)x j

〉
∣
∣
∣
∣
∣

≤
n∑

k=1

λk
〈xi , v〉 〈v, xk〉

λi + λk

〈xk, v〉 〈
v, x j

〉

λk + λ j

≤ 〈xi , v〉 〈
v, x j

〉 n∑

k=1

|〈xk, v〉|2
λk

=
〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
. (3.18)
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The latter estimate only relied on the inequality

∣
∣
〈
xi , SK (t)x j

〉∣
∣ ≤ 〈xi , v〉 〈

v, x j
〉

λi + λ j
, (3.19)

which is also true forCK (t), so the termsCK (t)h CK (t),CK (t)h SK (t) and SK (t)h CK (t)
also obey this estimate. It thus only remains to bound t Pv −{h, SK (t)}. FromProposition
3.5 we see that

〈xi , v〉 〈
v, x j

〉

1 + 2
〈
v, h−1v

〉 t ≤ 〈
xi , {h, SK (t)} x j

〉 ≤ 〈xi , v〉 〈
v, x j

〉
t (3.20)

whence
∣
∣
〈
xi , (t Pv − {h, SK (t)}) x j

〉∣
∣ = 〈

xi , Pvx j
〉
t − 〈

xi , {h, SK (t)} x j
〉

≤
(

1 − 1

1 + 2
〈
v, h−1v

〉

)

〈xi , v〉 〈
v, x j

〉
t ≤ 2

〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
. (3.21)

��
Combining equation (3.16) and Proposition 3.7 we conclude the following:

Proposition 3.8. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

∣
∣
〈
xi , A(t)x j

〉∣
∣ ,

∣
∣
〈
xi , B(t)x j

〉∣
∣ ≤ 3

(
1 +

〈
v, h−1v

〉)2 〈xi , v〉 〈
v, x j

〉
.

Analysis of {K , B(t)} and ∫ 1
0 B(t)dt We end by estimating {K , B(t)} and ∫ 1

0 B(t)dt ,
the latter of which will be needed for the analysis of the exchange contribution in the
next section.

Proposition 3.9. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

∣
∣
〈
xi , {K , B(t)} x j

〉∣
∣ ≤ 6

(
1 +

〈
v, h−1v

〉)2 〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
.

Proof. Using the Propositions 3.4 and 3.8 we see that

∣
∣
〈
xi , K B(t)x j

〉∣
∣ =

∣
∣
∣
∣
∣

n∑

k=1

〈xi , Kxk〉
〈
xk, B(t)x j

〉
∣
∣
∣
∣
∣

≤ 3
(
1 +

〈
v, h−1v

〉)2 n∑

k=1

〈xi , v〉 〈v, xk〉
λi + λk

〈xk, v〉 〈
v, x j

〉

≤ 3
(
1 +

〈
v, h−1v

〉)2 n∑

k=1

|〈xk, v〉|2
λk

〈xi , v〉 〈
v, x j

〉

= 3
(
1 +

〈
v, h−1v

〉)2 〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
. (3.22)

This estimate is also valid for
∣
∣
〈
xi , B(t)Kx j

〉∣
∣ whence the claim follows. ��
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Proposition 3.10. For all 1 ≤ i, j ≤ n it holds that
∣
∣
∣
∣

〈

xi ,

(∫ 1

0
B(t)dt

)

x j

〉

− 1

2
〈xi , v〉 〈

v, x j
〉
∣
∣
∣
∣ ≤

(
6 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
.

Proof. Noting that 1
2 〈xi , v〉 〈

v, x j
〉 = 1

2

〈
xi , Pvx j

〉
and that

∫ 1

0
B(t)dt − 1

2
Pv =

∫ 1

0

(
(1 − t) Pv + Bh(t) + etK Pve

tK − Pv

)
dt − 1

2
Pv

=
∫ 1

0

(
Bh(t) + etK Pve

tK − Pv

)
dt (3.23)

we can estimate using the Propositions 3.6 and 3.7 that
∣
∣
∣
∣

〈

xi ,

(∫ 1

0
B(t)dt−1

2
Pv

)

x j

〉∣
∣
∣
∣ ≤

∫ 1

0

(∣
∣
〈
xi , Bh(t)x j

〉∣
∣+

∣
∣
∣
〈
xi ,

(
etK Pve

tK−Pv

)
x j

〉∣
∣
∣
)
dt

≤
(
6 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
〈xi , v〉 〈

v, x j
〉
. (3.24)

��

Insertion of the particular operators hk and Pk Recall that the particular operators we
must consider are hk, Pk : 
2(Lk) → 
2(Lk) defined by

hkep = λk,pep, λk,p = 1
2

(|p|2 − |p − k|2) ,

Pk(·) = 〈vk, ·〉 vk, vk =
√

V̂kk
−1
F

2(2π)3

∑
p∈Lk

ep.
(3.25)

For these we have that

〈
vk, h

−1
k vk

〉
= V̂kk

−1
F

2 (2π)3

∑

p∈Lk

1

λk,p
. (3.26)

In [10] the following estimates for sums of the form
∑

p∈Lk
λ

β
k,p were proved:

Proposition 3.11. For any k ∈ Z
3∗ and β ∈ [−1, 0] it holds that

∑

p∈Lk

λ
β
k,p ≤ Cβ

{
k2+β
F |k|1+β |k| ≤ 2kF

k3F |k|2β |k| > 2kF

for a constant Cβ > 0 independent of k and kF .

In particular, it holds that
∑

p∈Lk

λ−1
k,p ≤ CkF min {1, k2F |k|−2}, (3.27)

so
〈
vk, h

−1
k vk

〉
≤ CV̂k . Additionally,

〈
ep, vk

〉 〈
vk, eq

〉 = V̂kk
−1
F

2 (2π)3
. (3.28)
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Inserting these quantities into the statements of the Propositions 3.4, 3.8 and 3.9 yields
Theorem 3.1, noting also that by Proposition 3.4

‖Kk‖HS =
√ ∑

p,q∈Lk

∣
∣
〈
ep, Kkeq

〉∣
∣2≤ V̂kk

−1
F

2 (2π)3

√
√
√
√

∑

p,q∈Lk

1
(
λk,p+λk,q

)2≤ V̂kk
−1
F

2 (2π)3

∑

p∈Lk

1

λk,p

≤ CV̂k min {1, k2F |k|−2}. (3.29)

4. Analysis of the Exchange Terms

In this section we analyze the exchange terms, by which we mean the quantities of the
expression

∑

k∈Z3∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)})+2Re

(
E1
k (Ak(t))

)
+2Re

(
E2
k (Bk(t))

))
e−(1−t)Kdt

(4.1)

which appears in Theorem 1.4. The name is apt as these enter our calculations due to
the presence of the exchange correction εk,l (p; q) of the quasi-bosonic commutation
relations (see Lemma 1.3). To be precise, we will consider in this section the operators
εk({Kk, Bk(t)}), E1

k (Ak(t)) and E2
k (Bk(t)), and the effect of the integration will be han-

dled in the next section. The main result of this section is the following estimates for
them:

Theorem 4.1. For any  ∈ HN and t ∈ [0, 1] it holds that
∣
∣
∣
∣
∣
∣

∑

k∈Z3∗

〈, εk({Kk, Bk(t)})〉
∣
∣
∣
∣
∣
∣
≤ Ck−1

F 〈,NE〉 ,

∑

k∈Z3∗

∣
∣
∣
〈
, E1

k (Ak(t))
〉∣
∣
∣ ≤ C

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,

(
N 3

E + 1
)


〉
,

∑

k∈Z3∗

∣
∣
∣
〈
,

(
E2
k (Bk(t)) −

〈
ψFS, E2

k (Bk(t))ψFS

〉)


〉∣
∣
∣

≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,N 3

E
〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

The constant terms in the final estimate of the theorem give the exchange contribution

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt. (4.2)

It is not generally negligible for singular potentials V , and the leading behavior is given
by by
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Proposition 4.2. It holds that
∣
∣
∣
∣
∣
∣

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt − Ecorr,ex

∣
∣
∣
∣
∣
∣
≤ C

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k , where

Ecorr,ex = k−2
F

4 (2π)6

∑

k∈Z3∗

∑

p,q∈Lk

V̂k V̂p+q−k

λk,p + λk,q
.

Analysis of εk terms. Let us first consider terms of the form
∑

k∈Z3∗ εk(Ak), where we
recall that

εk(Ak) = −
∑

p∈Lk

〈
ep, Akep

〉 (
c∗
pcp + cp−kc

∗
p−k

)
. (4.3)

When summing over k ∈ Z
3∗, we can split the sum into two parts and interchange the

summations as follows:

−
∑

k∈Z3∗

εk(Ak) =
∑

k∈Z3∗

∑

p∈Lk

〈
ep, Akep

〉
c∗pcp +

∑

k∈Z3∗

∑

q∈(Lk−k)

〈
eq+k , Akeq+k

〉
cqc

∗
q

=
∑

p∈Bc
F

⎛

⎜
⎝

∑

k∈Z3∗

1Lk (p)
〈
ep, Akep

〉

⎞

⎟
⎠ c∗pcp +

∑

q∈BF

⎛

⎜
⎝

∑

k∈Z3∗

1Lk (q + k)
〈
eq+k , Akeq+k

〉

⎞

⎟
⎠ cqc

∗
q .

(4.4)

Recalling that NE = ∑
p∈Bc

F
c∗
pcp = ∑

q∈BF
cqc∗

q on HN , we can then immediately
conclude that

±
∑

k∈Z3∗

εk(Ak)≤
⎛

⎜
⎝ sup

p∈Bc
F

∑

k∈Z3∗

1Lk (p)
∣
∣
〈
ep, Akep

〉∣
∣+ sup

q∈BF

∑

k∈Z3∗

1Lk (q + k)
∣
∣
〈
eq+k , Akeq+k

〉∣
∣

⎞

⎟
⎠NE

≤ 2

⎛

⎜
⎝

∑

k∈Z3∗

sup
p∈Lk

∣
∣
〈
ep, Akep

〉∣
∣

⎞

⎟
⎠NE . (4.5)

By the estimates of the previous section we thus obtain the first estimate of Theorem 4.1:

Proposition 4.3. For any  ∈ HN and t ∈ [0, 1] it holds that
∣
∣
∣
∣
∣
∣

∑

k∈Z3∗

〈, εk({Kk, Bk(t)})〉
∣
∣
∣
∣
∣
∣
≤ Ck−1

F 〈,NE〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .
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Proof. By Theorem 3.1 we have that
∣
∣
〈
ep, {Kk, Bk(t)} eq

〉∣
∣ ≤ C

(
1 + V̂ 2

k

)
V̂ 2
k k

−1
F , k ∈ Z

3∗, p, q ∈ Lk, (4.6)

for a constant C > 0 independent of all quantities, so
∣
∣
∣
∣
∣
∣

∑

k∈Z3∗

〈, εk({Kk, Bk(t)})〉
∣
∣
∣
∣
∣
∣
≤ 2

⎛

⎝
∑

k∈Z3∗

sup
p∈Lk

∣
∣
〈
ep, {Kk, Bk(t)} ep

〉∣
∣

⎞

⎠ 〈,NE〉

≤ Ck−1
F

∑

k∈Z3∗

(
1 + V̂ 2

k

)
V̂ 2
k 〈,NE〉 ≤ Ck−1

F

(
1 + ‖V̂ ‖2∞

) ∑

k∈Z3∗

V̂ 2
k 〈,NE〉 .

(4.7)

As ‖V̂ ‖2∞ ≤ ‖V̂ ‖22 = ∑
k∈Z3∗ V̂

2
k the claim follows. ��

4.1. Analysis of E1
k terms. We consider terms of the form

E1
k (Ak) =

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll
b∗
k (Akep)

{
εk,l(ep; eq), b∗−l(K−l e−q)

}
. (4.8)

Recalling that

εk,l(ep; eq) = −
(
δp,qcq−l c

∗
p−k + δp−k,q−l c

∗
qcp

)
(4.9)

we see that E1
k (Ak) splits into two sums as

−E1
k (Ak) =

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll
b∗
k (Akep)

{
δp,qcq−l c

∗
p−k, b

∗−l(K−l e−q)
}

+
∑

l∈Z3∗

∑

p∈(Lk−k)

∑

q∈(Ll−l)

b∗
k (Akep+k)

{
δp,qc

∗
q+l cp+k, b

∗−l(K−l e−q−l)
}

=
∑

l∈Z3∗

∑

p∈Lk∩Ll

b∗
k (Akep)

{
cp−l c

∗
p−k, b

∗−l(K−l e−p)
}

+
∑

l∈Z3∗

∑

p∈(Lk−k)∩(Ll−l)

b∗
k (Akep+k)

{
c∗
p+l cp+k, b

∗−l

(
K−l e−p−l

)}
. (4.10)

The two sums on the right-hand side have the same “schematic form”: They can be
written as

∑

l∈Z3∗

∑

p∈Sk∩Sl

b∗
k

(
Akep1

) {
c̃∗
p2 c̃p3 , b

∗−l

(
K−l ep4

)}
, c̃p =

{
cp p ∈ Bc

F
c∗
p p ∈ BF

, (4.11)

where the index set is either the lune Sk = Lk or the corresponding hole states Sk =
Lk − k, and depending on this index set the variables p1, p2, p3, p4 are given by

(p1, p2, p3, p4) =
{

(p, p − l, p − k,−p) Sk = Lk

(p + k, p + l, p + k,−p − l) Sk = Lk − k
. (4.12)
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Note that in either case p1, p3 only depend on p and k, while p2, p4 depend only on p
and l. Additionally, p1 is always an element of Lk and p4 is always an element of L−l .

Since bk,p = c∗
p−kcp = c̃p−k c̃p it is easily seen that

[
b, c̃

] = 0, so in normal-ordering
(with respect to ψFS) the summand of equation (4.11) we find

b∗
k

(
Akep1

) {
c̃∗
p2 c̃p3 , b

∗−l

(
K−l ep4

)}

= b∗
k

(
Akep1

)
c̃∗
p2 c̃p3b

∗−l

(
K−l ep4

)
+ b∗

k

(
Akep1

)
b∗−l

(
K−l ep4

)
c̃∗
p2 c̃p3

= 2 c̃∗
p2b

∗
k

(
Akep1

)
b∗−l

(
K−l ep4

)
c̃p3 + c̃∗

p2b
∗
k

(
Akep1

) [
c̃p3 , b

∗−l

(
K−l ep4

)]
. (4.13)

To bound a sum of the form
∑

k∈Z3∗ E
k
1 (Ak) it thus suffices to estimate the two schematic

forms
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2b

∗
k

(
Akep1

)
b∗−l

(
K−l ep4

)
c̃p3 ,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2b

∗
k

(
Akep1

) [
b−l

(
K−l ep4

)
, c̃∗

p3

]∗
. (4.14)

Preliminary estimates We prepare for the estimation of these schematic forms by de-
riving some auxilliary bounds for the operators involved. Recall that for any k ∈ Z

3∗ and
ϕ ∈ 
2(Lk),

bk(ϕ) =
∑

p∈Lk

〈
ϕ, ep

〉
bk,p =

∑

p∈Lk

〈
ϕ, ep

〉
c∗
p−kcp. (4.15)

Denote Nk = ∑
p∈Lk

b∗
k,pbk,p. We can bound both bk(ϕ) and b∗

k (ϕ) as follows:

Proposition 4.4. For any k ∈ Z
3∗, ϕ ∈ 
2(Lk) and  ∈ HN it holds that

‖bk(ϕ)‖ ≤ ‖ϕ‖ ‖N
1
2
k ‖, ∥

∥b∗
k (ϕ)

∥
∥ ≤ ‖ϕ‖ ‖ (Nk + 1)

1
2 ‖.

Proof. By the triangle and Cauchy-Schwarz inequalities we immediately obtain

‖bk(ϕ)‖ ≤
∑

p∈Lk

∣
∣
〈
ϕ, ep

〉∣
∣
∥
∥bk,p

∥
∥ ≤ ‖ϕ‖

√ ∑

p∈Lk

∥
∥bk,p

∥
∥2 = ‖ϕ‖ ‖N

1
2
k ‖

(4.16)

and the bound for
∥
∥b∗

k (ϕ)
∥
∥ now follows from (4.16) and the fact that

εk,k (ϕ;ϕ) = [
bk(ϕ), b∗

k (ϕ)
] − ‖ϕ‖2 = −

∑

p∈Lk

∣
∣
〈
ep, ϕ

〉∣
∣2

(
cp−kc

∗
p−k + c∗

pcp
)

≤ 0.

(4.17)

��
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It is straightforward to see thatNk ≤ NE . Moreover, by rearranging the summations,

∑

k∈Z3∗

Nk =
∑

k∈Z3∗

∑

p∈Lk

c∗
pcp−kc

∗
p−kcp =

∑

p∈Bc
F

c∗
pcp

∑

k∈(BF+p)

cp−kc
∗
p−k = N 2

E (4.18)

on HN . We also note that for any  ∈ HN and p ∈ Z
3

‖N
1
2
k c̃p‖ ≤ ‖c̃pN

1
2
k ‖ ≤ ‖c̃pN

1
2
E ‖

‖ (Nk + 1)
1
2 c̃p‖ ≤ ‖c̃p (Nk + 1)

1
2 ‖ ≤ ‖c̃p (NE + 1)

1
2 ‖, (4.19)

as follows by the inequality (considering p ∈ Bc
F for definiteness)

c̃∗
pNk c̃p =

∑

q∈Lk

c∗
pc

∗
qcq−kc

∗
q−kcqcp =

∑

q∈Lk

c∗
qcq−kc

∗
q−k

(
cqc

∗
p − δp,q

)
cp

= Nkc
∗
pcp − 1Lk (p)c

∗
pcp−kc

∗
p−kcp ≤ Nkc

∗
pcp (4.20)

and the fact that
[
c̃∗
pcp,Nk

]
= 0 =

[
c̃∗
pcp,NE

]
. Similarly

‖N
1
2
E c̃p‖ ≤ ‖c̃pN

1
2
E ‖, ‖ (NE + 1)

1
2 c̃p‖ ≤ ‖c̃p (NE + 1)

1
2 ‖. (4.21)

To analyze the commutator term
[
b−l

(
K−l ep4

)
, c̃∗

p3

]
we calculate a general identity:

For any l ∈ Z
3∗, ψ ∈ 
2(Ll) and p ∈ Z

3

[
bl (ψ) , c̃∗

p

]
=

{
−1Ll (p + l)

〈
ψ, ep+l

〉
c̃p+l p ∈ BF

1Ll (p)
〈
ψ, ep

〉
c̃p−l p ∈ Bc

F
, (4.22)

so for our particular commutator we obtain

[
b−l

(
K−l ep4

)
, c̃∗

p3

]
=

{
−1L−l (p3 − l)

〈
K−l ep4 , ep3−l

〉
c̃p3−l Sk = Lk

1L−l (p3)
〈
K−l ep4 , ep3

〉
c̃p3+l Sk = Lk − k

.

(4.23)

It will be crucial to our estimates that the prefactors obey the following:

Proposition 4.5. For any k, l ∈ Z
3∗ and p ∈ Sk ∩ Sl it holds that

∣
∣1L−l (p3 − l)

〈
K−l ep4 , ep3−l

〉∣
∣ ≤ CV̂−l k

−1
F

1L−k (p2 − k)1L−l (p3 − l)
√

λk,p1 + λ−k,p2−k
√

λ−l,p3−l + λ−l,p4
, Sk = Lk ,

∣
∣1L−l (p3)

〈
K−l ep4 , ep3

〉∣
∣ ≤ CV̂−l k

−1
F

1L−k (p2)1L−l (p3)√
λk,p1 + λ−k,p2

√
λ−l,p3 + λ−l,p4

, Sk = Lk − k.

Proof. Recall that p1, p2, p3, p4 are given by

(p1, p2, p3, p4) =
{

(p, p − l, p − k,−p) Sk = Lk

(p + k, p + l, p + k,−p − l) Sk = Lk − k
. (4.24)
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From this we see that for any p ∈ Sk ∩ Sl

{
1L−l (p3 − l) Sk = Lk

1L−l (p3) Sk = Lk − k
=

{
1L−k (p2 − k) Sk = Lk

1L−k (p2) Sk = Lk − k
(4.25)

where the assumption that p ∈ Sk∩Sl enters to ensure that 1BF (p−k) = 1 = 1BF (p−l)
or 1Bc

F
(p + k) = 1 = 1Bc

F
(p + l), respectively. Importantly this also implies that, when

combined with such an indicator function, we also have the identity

{
λ−l,p3−l + λ−l,p4 Sk = Lk

λ−l,p3 + λ−l,p4 Sk = Lk − k
=

{
λk,p1 + λ−k,p2−k Sk = Lk

λk,p1 + λ−k,p2 Sk = Lk − k
. (4.26)

The claim now follows by applying these identities to the estimates

∣
∣1L−l (p3 − l)

〈
K−l ep4 , ep3−l

〉∣
∣ ≤ C

1L−l (p3 − l)V̂−l k
−1
F

λ−l,p3−l + λ−l,p4
, Sk = Lk, (4.27)

∣
∣1L−l (p3)

〈
K−l ep4 , ep3

〉∣
∣ ≤ C

1L−l (p3)V̂−l k
−1
F

λ−l,p3 + λ−l,p4
, Sk = Lk − k,

which are given by Theorem 3.1. ��
Below we will only use the simpler bound

{∣
∣1L−l (p3 − l)

〈
K−l ep4 , ep3−l

〉∣
∣ Sk = Lk∣

∣1L−l (p3)
〈
K−l ep4 , ep3

〉∣
∣ Sk = Lk − k

≤ C
V̂−l k

−1
F√

λk,p1λ−l,p4
(4.28)

but for the E2
k terms the more general ones will be needed.

Estimation of
∑

k∈Z3∗ E1
k (Ak(t)) Now the main estimate of this subsection:

Proposition 4.6. For any collection of symmetric operators (Ak) and  ∈ HN it holds
that

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
k

(
Akep1

)
b∗−l

(
K−l ep4

)
c̃p3

〉∣
∣
∣

≤ C
√∑

k∈Z3∗

max
p∈Lk

∥
∥Akep

∥
∥2‖ (NE + 1)

3
2 ‖2

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
k

(
Akep1

) [
b−l

(
K−l ep4

)
, c̃∗

p3

]∗
c̃p3

〉∣
∣
∣

≤ Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

‖Akh
− 1

2
k ‖2HS ‖(NE + 1) ‖2 .
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Proof. Using the triangle and Cauchy-Schwarz inequalities and Proposition 4.4 we es-
timate

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
k

(
Akep1

)
b∗−l

(
K−l ep4

)
c̃p3

〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∥
∥bk

(
Akep1

)
c̃p2

∥
∥

∥
∥b∗−l

(
K−l ep4

)
c̃p3

∥
∥

≤
∑

k∈Z3∗

∑

p∈Sk

∑

l∈Z3∗

1Sl (p)
∥
∥Akep1

∥
∥

∥
∥K−l ep4

∥
∥ ‖N

1
2
k c̃p2‖‖ (N−l + 1)

1
2 c̃p3‖

≤
∑

k∈Z3∗

(

max
p∈Lk

∥
∥Akep

∥
∥
) ∑

p∈Sk
‖c̃p3 (NE + 1)

1
2 ‖

√∑

l∈Z3∗

1Sl (p)
∥
∥K−l ep4

∥
∥2

√
√
√
√

∑

l∈Z3∗

1Sl (p)‖c̃p2N
1
2
k ‖2

≤
∑

k∈Z3∗

(

max
p∈Lk

∥
∥Akep

∥
∥
)

‖N
1
2
E N

1
2
k ‖

√∑

p∈Sk
‖c̃p3 (NE + 1)

1
2 ‖2

√∑

p∈Sk

∑

l∈Z3∗

1Sl (p)
∥
∥K−l ep4

∥
∥2

≤
√∑

k∈Z3∗

max
p∈Lk

∥
∥Akep

∥
∥2

√∑

l∈Z3∗

‖Kl‖2HS ‖(NE + 1) ‖
√
√
√
√

∑

k∈Z3∗

‖N
1
2
E N

1
2
k ‖2

=
√∑

k∈Z3∗

max
p∈Lk

∥
∥Akep

∥
∥2

√∑

l∈Z3∗

‖Kl‖2HS ‖(NE + 1) ‖ ‖N
3
2
E ‖ (4.29)

and the first bound now follows by recalling that ‖Kl‖2HS ≤ CV̂l . For the second we
have by the equations (4.23) and (4.28) that

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
k

(
Akep1

) [
b−l

(
K−l ep4

)
, c̃∗

p3

]∗


〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∥
∥
∥
[
b−l

(
K−l ep4

)
, c̃∗

p3

]
c̃p2

∥
∥
∥

∥
∥b∗

k

(
Akep1

)


∥
∥

≤ C
∑

l∈Z3∗

∑

p∈Sl

∑

k∈Z3∗

1Sk (p)
∥
∥Akep1

∥
∥ V̂−l k

−1
F√

λk,p1λ−l,p4

∥
∥c̃p3∓l c̃p2

∥
∥ ‖ (Nk + 1)

1
2 ‖

≤ Ck−1
F ‖ (NE + 1)

1
2 ‖

∑

p

∑

l∈Z3∗

1Sl (p)V̂−l
√

λ−l,p4

√
√
√
√

∑

k∈Z3∗

1Sk (p)‖Akh
− 1

2
k ep1‖2

√∑

k∈Z3∗

1Sk (p)
∥
∥c̃p3∓l c̃p2

∥
∥2



1498 M. R. Christiansen, C. Hainzl, P. T. Nam

≤ Ck−1
F ‖ (NE + 1)

1
2 ‖

∑

p

√
√
√
√

∑

k∈Z3∗

1Sk (p)‖Akh
− 1

2
k ep1‖2

√
√
√
√
√

∑

l∈Z3∗

1Sl (p)
V̂ 2−l

λ−l,p4

√
√
√
√

∑

l∈Z3∗

1Sl (p)‖c̃p2N
1
2
E ‖2

≤ Ck−1
F ‖ (NE + 1)

1
2 ‖ ‖NE‖

√
√
√
√

∑

k∈Z3∗

∑

p∈Sk
‖Akh

− 1
2

k ep1‖2
√
√
√
√

∑

l∈Z3∗

V̂ 2−l

∑

p∈Sl

1

λ−l,p4

≤ Ck−1
F

√
√
√
√

∑

k∈Z3∗

‖Akh
− 1

2
k ‖2HS

√
√
√
√

∑

l∈Z3∗

V̂ 2
l

∑

p∈Ll

1

λl,p
‖ (NE + 1)

1
2 ‖ ‖NE‖ (4.30)

where we used
∥
∥Akep1

∥
∥ λ

− 1
2

k,p1
= ‖Akh

− 1
2

k ep1‖. The claim follows by
∑

p∈Ll λ
−1
l,p ≤

CkF . �
The bound on

∑
k∈Z3∗ E1

k (Ak(t)) of Theorem 4.1 now follows by our matrix element
estimates:

Proposition 4.7. For any  ∈ HN and t ∈ [0, 1] it holds that

∑

k∈Z3∗

∣
∣
∣
〈
, E1

k (Ak(t))
〉∣
∣
∣ ≤ C

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,

(
N 3

E + 1
)


〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. By Theorem 3.1 we have
∣
∣
〈
ep, Ak(t)eq

〉∣
∣ ≤ C

(
1 + V̂ 2

k

)
V̂kk

−1
F , k ∈ Z

3∗, p, q ∈ Lk . (4.31)

Combining with |Lk | ≤ C min
{
k2F |k| , k3F

}
since

∑
q∈Lk

λ−1
k,q ≤ CkF , we get

∑

k∈Z3∗

max
p∈Lk

∥
∥Ak(t)ep

∥
∥2 ≤ C

k2F

∑

k∈Z3∗

(
1 + V̂ 2

k

)2
V̂ 2
k |Lk |

= C
(
1 + ‖V̂ ‖4∞

) ∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

∑

k∈Z3∗

‖Ak(t)h
− 1

2
k ‖2HS =

∑

k∈Z3∗

∑

p,q∈Lk

∣
∣
∣
∣

〈

ep, Ak(t)h
− 1

2
k eq

〉∣
∣
∣
∣

2

≤ Ck−2
F

∑

k∈Z3∗

(
1 + V̂ 2

k

)2
V̂ 2
k |Lk |

∑

q∈Lk

1

λk,q

≤ CkF
(
1 + ‖V̂ ‖4∞

) ∑

k∈Z3∗

V̂ 2
k min {|k| , kF } . (4.32)

Inserting these estimates into Proposition 4.6 yields the claim. ��
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4.2. Analysis of E2
k terms. Now we come to the terms

E2
k (Bk) = 1

2

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll

{
bk(Bkep),

{
ε−k,−l(e−p; e−q), b

∗
l (Kleq)

}}
. (4.33)

We will analyze these similarly to the E1
k (Ak) terms. Noting that

ε−k,−l(e−p; e−q) = −
(
δp,qc−q+l c

∗−p+k + δp−k,q−l c
∗−qc−p

)
(4.34)

we find that E2
k (Bk) splits into two sums as

−2 E2
k (Bk) =

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll

{
bk(Bkep),

{
δp,qc−q+l c

∗−p+k, b
∗
l (Kleq)

}}

+
∑

l∈Z3∗

∑

p∈(Lk−k)

∑

q∈(Ll−l)

{
bk

(
Bkep+k

)
,
{
δp,qc

∗−q−l c−p−k, b
∗
l

(
Kleq+l

)}}

=
∑

l∈Z3∗

∑

p∈Lk∩Ll

{
bk(Bkep),

{
c−p+l c

∗−p+k, b
∗
l

(
Klep

)}}

+
∑

l∈Z3∗

∑

p∈(Lk−k)∩(Ll−l)

{
bk

(
Bkep+k

)
,
{
c∗−p−l c−p−k, b

∗
l

(
Klep+l

)}}

(4.35)

and again these share a common schematic form, namely

∑

l∈Z3∗

∑

p∈Sk∩Sl

{
bk

(
Bkep1

)
,
{
c̃∗
p2 c̃p3 , b

∗
l

(
Klep4

)}}
(4.36)

where the momenta are now

(p1, p2, p3, p4) =
{

(p,−p + l,−p + k, p) Sk = Lk

(p + k,−p − l,−p − k, p + l) Sk = Lk − k
. (4.37)

Again p1, p3 only depend on p and k while p2, p4 only depend on p and l.
We normal order the summand: As

bk
(
Bkep1

) {
c̃∗
p2 c̃p3 , b

∗
l

(
Klep4

)}

= c̃∗
p2bk

(
Bkep1

) {
c̃p3 , b

∗
l

(
Klep4

)}
+

[
bk

(
Bkep1

)
, c̃∗

p2

] {
c̃p3 , b

∗
l

(
Klep4

)}

= 2 c̃∗
p2bk

(
Bkep1

)
b∗
l

(
Klep4

)
c̃p3 + c̃∗

p2bk
(
Bkep1

) [
bl

(
Klep4

)
, c̃∗

p3

]∗

+ 2
[
bk

(
Bkep1

)
, c̃∗

p2

]
b∗
l

(
Klep4

)
c̃p3 +

[
bk

(
Bkep1

)
, c̃∗

p2

] [
bl

(
Klep4

)
, c̃∗

p3

]∗

= 2 c̃∗
p2b

∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3 + 2 c̃∗

p2

[
bk

(
Bkep1

)
, b∗

l

(
Klep4

)]
c̃p3

+ c̃∗
p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)
+ c̃∗

p2

[
bk

(
Bkep1

)
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗]

+ 2 b∗
l

(
Klep4

) [
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3 + 2

[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p2

]∗]∗
c̃p3
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−
[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]
+

{[
bk

(
Bkep1

)
, c̃∗

p2

]
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗}

(4.38)

and simply
{
c̃∗
p2 c̃p3 , b

∗
l

(
Klep4

)}
bk

(
Bkep1

) = c̃∗
p2

{
c̃p3 , b

∗
l

(
Klep4

)}
bk

(
Bkep1

)

= 2 c̃∗
p2b

∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3 + c̃∗

p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)
(4.39)

the summand decomposes into 8 schematic forms as
{
bk

(
Bkep1

)
,
{
c̃∗
p2 c̃p3 , b

∗
l

(
Klep4

)}}

= 4 c̃∗
p2b

∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3 + 2 c̃∗

p2

[
bk

(
Bkep1

)
, b∗

l

(
Klep4

)]
c̃p3

+ 2 c̃∗
p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)
+ 2 b∗

l

(
Klep4

) [
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3

+ c̃∗
p2

[
bk

(
Bkep1

)
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗]
+ 2

[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p2

]∗]∗
c̃p3

−
[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]
+

{[
bk

(
Bkep1

)
, c̃∗

p2

]
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗}
.

(4.40)

Of these it should be noted that only the last one is proportional to a constant (i.e. does not
contain any creation or annihilation operators). As the rest annihilateψFS, it follows that
(when summed) the constant term yields precisely

〈
ψFS, E2

k (Bk)ψFS
〉
, whence bounding

the other terms amounts to estimating the operator

E2
k (Bk) −

〈
ψFS, E2

k (Bk)ψFS

〉
(4.41)

as in the statement of Theorem 4.1.

Estimation of the top terms We begin by bounding the “top” terms
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2b

∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3 and

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2

[
bk

(
Bkep1

)
, b∗

l

(
Klep4

)]
c̃p3 .

By the quasi-bosonic commutation relations, the commutator term reduces to
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2

[
bk

(
Bkep1

)
, b∗

l

(
Klep4

)]
c̃p3

=
∑

k∈Z3∗

∑

p∈Sk

〈
Bkep1 , Kkep1

〉
c̃∗
p3 c̃p3 +

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2εk,l

(
Bkep1; Klep4

)
c̃p3

(4.42)

where we used that p1 = p4 and p2 = p3 when k = l. Now, the exchange correction of
the second sum splits as

−εk,l
(
Bkep1 ; Klep4

) =
∑

q∈Lk

∑

q ′∈Ll

〈
Bkep1 , eq

〉 〈
eq ′ , Klep4

〉 (
δq,q ′cq ′−l c

∗
q−k + δq−k,q ′−l c

∗
q ′cq

)
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=
∑

q∈Lk∩Ll

〈
Bkep1 , eq

〉 〈
eq , Klep4

〉
c̃∗q−l c̃q−k

+
∑

q∈(Lk−k)∩(Ll−l)

〈
Bkep1 , eq+k

〉 〈
eq+l , Klep4

〉
c̃∗q+l c̃q+k (4.43)

which are both of the schematic form
∑

q∈S′
k∩S′

l

〈
Bkep1 , eq1

〉 〈
eq4 , Klep4

〉
c̃∗
q2 c̃q3 .

To estimate
∑

k,l∈Z3∗
∑

p∈Sk∩Sl c̃
∗
p2εk,l

(
Bkep1; Klep4

)
c̃p3 it thus suffices to consider

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∑

q∈S′
k∩S′

l

〈
Bkep1 , eq1

〉 〈
eq4 , Klep4

〉
c̃∗
p2 c̃

∗
q2 c̃q3 c̃p3 . (4.44)

The estimates for the top terms are as follows:

Proposition 4.8. For any collection of symmetric operators (Bk) and  ∈ HN it holds
that

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3

〉∣
∣
∣

≤ C
√∑

k∈Z3∗

max
p∈Lk

∥
∥Bkep

∥
∥2‖N

3
2
E ‖2

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2

[
bk

(
Bkep1

)
, b∗

l

(
Klep4

)]
c̃p3

〉∣
∣
∣

≤ C
√∑

k∈Z3∗

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 ‖NE‖2

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. The first term we can estimate as in Proposition 4.6 by
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2b
∗
l

(
Klep4

)
bk

(
Bkep1

)
c̃p3

〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∥
∥bl

(
Klep4

)
c̃p2

∥
∥

∥
∥bk

(
Bkep1

)
c̃p3

∥
∥

≤
∑

k∈Z3∗

∑

p∈Sk

∑

l∈Z3∗

1Sl (p)
∥
∥Bkep1

∥
∥

∥
∥Klep4

∥
∥ ‖N

1
2
l c̃p2‖‖N

1
2
k c̃p3‖

≤
∑

k∈Z3∗

(

max
p∈Lk

∥
∥Bkep

∥
∥
) ∑

p∈Sk
‖c̃p3N

1
2
k ‖

√∑

l∈Z3∗

1Sl (p)
∥
∥Klep4

∥
∥2

×
√
√
√
√

∑

l∈Z3∗

1Sl (p)‖c̃p2N
1
2
E ‖2

≤ ‖NE‖
∑

k∈Z3∗

(

max
p∈Lk

∥
∥Bkep

∥
∥
)√

√
√
√

∑

p∈Sk
‖c̃p3N

1
2
k ‖2

√∑

p∈Sk

∑

l∈Z3∗

1Sl (p)
∥
∥Klep4

∥
∥2



1502 M. R. Christiansen, C. Hainzl, P. T. Nam

≤
√∑

l∈Z3∗

‖Kl‖2HS ‖NE‖
∑

k∈Z3∗

(

max
p∈Lk

∥
∥Bkep

∥
∥
)

‖N
1
2
E N

1
2
k ‖ (4.45)

and obviously ‖N
1
2
E N

1
2
k ‖ ≤ ‖NE‖‖N

3
2
E ‖. For the commutator term we have

∑

k∈Z3∗

∑

p∈Sk

∣
∣
∣
〈
Bkep1 , Kkep1

〉 〈
, c̃∗

p3 c̃p3
〉∣
∣
∣ ≤

∑

k∈Z3∗

max
p∈Lk

∣
∣
〈
Bkep, Kkep

〉∣
∣
∑

p∈Sk

〈
, c̃∗

p3 c̃p3
〉

≤
∑

k∈Z3∗

max
p∈Lk

∣
∣
〈
ep, BkKkep

〉∣
∣ 〈,NE〉 .

(4.46)

By the matrix element estimate for Kk of Theorem 3.1 we have for any p ∈ Lk that

∣
∣
〈
Bkep, Kkep

〉∣
∣ ≤

∑

q∈Lk

∣
∣
〈
Bkep, eq

〉∣
∣
∣
∣
〈
eq , Kkep

〉∣
∣ ≤ C

∑

q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣ V̂kk

−1
F

λk,q + λk,p

≤ CV̂kk
−1
F

(

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣
) ∑

q∈Lk

1

λk,q
≤ CV̂k max

q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣

(4.47)

since
∑

q∈Lk
λ−1
k,q ≤ CkF . Consequently

∑

k∈Z3∗

∑

p∈Sk

∣
∣
∣
〈
Bkep1 , Kkep1

〉 〈
, c̃∗

p3 c̃p3
〉∣
∣
∣ ≤ C

∑

k∈Z3∗

V̂k

(

max
p,q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣
)

〈,NE〉

≤ C
√∑

k∈Z3∗

V̂ 2
k

√∑

k∈Z3∗

max
p,q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 〈,NE〉 (4.48)

and clearly

max
p,q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 ≤

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 . (4.49)

Finally

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∑

q∈S′
k∩S′

l

∣
∣
∣
〈
Bkep1 , eq1

〉 〈
eq4 , Klep4

〉 〈
, c̃∗

p2 c̃
∗
q2 c̃q3 c̃p3

〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∑

q∈S′
k∩S′

l

∣
∣
〈
Bkep1 , eq1

〉∣
∣
∣
∣
〈
eq4 , Klep4

〉∣
∣
∥
∥c̃q2 c̃p2

∥
∥

∥
∥c̃q3 c̃p3

∥
∥

≤
√ ∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∑

q∈S′
k∩S′

l

∣
∣
〈
Bkep1 , eq1

〉∣
∣2

∥
∥c̃q2 c̃p2

∥
∥2

√ ∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∑

q∈S′
k∩S′

l

∣
∣
〈
eq4 , Klep4

〉∣
∣2

∥
∥c̃q3 c̃p3

∥
∥2
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≤
√
√
√
√

∑

k∈Z3∗

∑

p∈Sk
max
q∈Lk

∣
∣
〈
ep1 , Bkeq

〉∣
∣2

∑

l∈Z3∗

1Sl (p)‖c̃p2N
1
2
E ‖2

√∑

l∈Z3∗

∑

p∈Sl

∥
∥Klep4

∥
∥2

∑

k∈Z3∗

1Sk (p)
∥
∥c̃p3

∥
∥2

≤
√∑

k∈Z3∗

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2

√∑

l∈Z3∗

‖Kl‖2HS‖N
1
2
E ‖ ‖NE‖ (4.50)

whence the claim follows as ‖Kl‖HS ≤ CV̂l . ��

Estimation of the single commutator terms For the single commutator terms

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)
and

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

b∗
l

(
Klep4

) [
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3

we note that by equation (4.22), the commutator
[
bl

(
Klep4

)
, c̃∗

p3

]
is given by

[
bl

(
Klep4

)
, c̃∗

p3

]
=

{
−1Ll (p3 + l)

〈
Klep4 , ep3+l

〉
c̃p3+l Sk = Lk

1Ll (p3)
〈
Klep4 , ep3

〉
c̃p3−l Sk = Lk − k

. (4.51)

The prefactors again obey an estimate as in Proposition 4.5:

Proposition 4.9. For any k, l ∈ Z
3∗ and p ∈ Sk ∩ Sl it holds that

∣
∣1Ll (p3 + l)

〈
Klep4 , ep3+l

〉∣
∣ ≤ CV̂lk

−1
F

1Lk (p2 + k)1Ll (p3 + l)
√

λk,p1 + λk,p2+k
√

λl,p3+l + λl,p4
, Sk = Lk,

∣
∣1Ll (p3)

〈
Klep4 , ep3

〉∣
∣ ≤ CV̂lk

−1
F

1Lk (p2)1Ll (p3)√
λk,p1 + λk,p2

√
λl,p3 + λl,p4

, Sk = Lk − k.

The proof is essentially the same as that of Proposition 4.5 (indeed, this proposition
can be obtained directly from the former by appropriate substition, but some care must
be used since the pi ’s differ in their definition).

For the single commutator terms we again only need the simpler bound

{∣
∣1Ll (p3 + l)

〈
Klep4 , ep3+l

〉∣
∣ Sk = Lk∣

∣1Ll (p3)
〈
Klep4 , ep3

〉∣
∣ Sk = Lk − k

≤ C
V̂lk

−1
F√

λk,p1λl,p4
(4.52)

but the full onewill be needed for the double commutator terms below. Now the estimate:
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Proposition 4.10. For any collection of symmetric operators (Bk) and ∈ HN it holds
that

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)


〉∣
∣
∣

≤ Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

‖Bkh
− 1

2
k ‖2HS ‖NE‖2 ,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, b∗

l

(
Klep4

) [
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3

〉∣
∣
∣

≤ C
√∑

k∈Z3∗

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 ‖NE‖2

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. As in the second estimate of Proposition 4.6 we have

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2

[
bl

(
Klep4

)
, c̃∗

p3

]∗
bk

(
Bkep1

)


〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∥
∥
∥
[
bl

(
Klep4

)
, c̃∗

p3

]
c̃p2

∥
∥
∥

∥
∥bk

(
Bkep1

)


∥
∥

≤ C
∑

l∈Z3∗

∑

p∈Sl

∑

k∈Z3∗

1Sk (p)
∥
∥Bkep1

∥
∥ V̂lk

−1
F√

λk,p1λl,p4

∥
∥c̃p3±l c̃p2

∥
∥ ‖N

1
2
k ‖

≤ Ck−1
F ‖N

1
2
E ‖

∑

p

∑

l∈Z3∗

1Sl (p)V̂l√
λl,p4

√
√
√
√

∑

k∈Z3∗

1Sk (p)‖Bkh
− 1

2
k ep1‖2

×
√∑

k∈Z3∗

1Sk (p)
∥
∥c̃p3±l c̃p2

∥
∥2

≤ Ck−1
F ‖N

1
2
E ‖

∑

p

√
√
√
√

∑

k∈Z3∗

1Sk (p)‖Bkh
− 1

2
k ep1‖2

√
√
√
√

∑

l∈Z3∗

1Sl (p)
V̂ 2
l

λl,p4

×
√
√
√
√

∑

l∈Z3∗

1Sl (p)‖c̃p2N
1
2
E ‖2

≤ Ck−1
F ‖N

1
2
E ‖ ‖NE‖

√
√
√
√

∑

k∈Z3∗

∑

p∈Sk
‖Bkh

− 1
2

k ep1‖2
√
√
√
√

∑

l∈Z3∗

V̂ 2
l

∑

p∈Sl

1

λl,p4

≤ Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

‖Bkh
− 1

2
k ‖2HS

√∑

l∈Z3∗

V̂ 2
l ‖N

1
2
E ‖ ‖NE‖ . (4.53)
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By equation (4.22) it holds that

[
bk

(
Bkep1

)
, c̃∗

p2

]
=

{
−1Lk (p2 + k)

〈
Bkep1 , ep2+k

〉
c̃p2+k p ∈ BF

1Lk (p2)
〈
Bkep1 , ep2

〉
c̃p2−k p ∈ Bc

F
(4.54)

so the second term can be bounded as
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, b∗

l

(
Klep4

) [
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3

〉∣
∣
∣

≤
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∥
∥bl

(
Klep4

)


∥
∥

∥
∥
∥
[
bk

(
Bkep1

)
, c̃∗

p2

]
c̃p3

∥
∥
∥

≤
∑

k∈Z3∗

∑

p∈Sk

∑

l∈Z3∗

1Sl (p)

(

max
q∈Lk

∣
∣
〈
ep1 , Bkeq

〉∣
∣
)

∥
∥Klep4

∥
∥ ‖N

1
2
l ‖ ∥

∥c̃p2±k c̃p3
∥
∥

≤ ‖N
1
2
E ‖

∑

p

∑

k∈Z3∗

1Sk (p)

(

max
q∈Lk

∣
∣
〈
ep1 , Bkeq

〉∣
∣
)√∑

l∈Z3∗

1Sl (p)
∥
∥Klep4

∥
∥2

√∑

l∈Z3∗

1Sl (p)
∥
∥c̃p2±k c̃p3

∥
∥2

≤ ‖N
1
2
E ‖

∑

p

√∑

l∈Z3∗

1Sl (p)
∥
∥Klep4

∥
∥2

√
√
√
√

∑

k∈Z3∗

1Sk (p)

(

max
q∈Lk

∣
∣
〈
ep1 , Bkeq

〉∣
∣2

)

√
√
√
√

∑

k∈Z3∗

1Sk (p)‖c̃p3N
1
2
E ‖2

≤ ‖N
1
2
E ‖ ‖NE‖

√∑

l∈Z3∗

∑

p∈Sl

∥
∥Klep4

∥
∥2

√∑

k∈Z3∗

∑

p∈Sk
max
q∈Lk

∣
∣
〈
ep1 , Bkeq

〉∣
∣2

≤
√∑

k∈Z3∗

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2

√∑

l∈Z3∗

‖Kl‖2HS ‖N
1
2
E ‖ ‖NE‖ . (4.55)

��

Estimation of the double commutator terms Finally we have the double commutator
terms

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

c̃∗
p2

[
bk

(
Bkep1

)
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗]
,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p2

]∗]∗
c̃p3 ,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]
. (4.56)
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An identity for the iterated commutators is obtained by applying the identity of equation
(4.22) to itself: For any k, l ∈ Z

3∗, ϕ ∈ 
2(Lk), ψ ∈ 
2(Ll) and p ∈ Z
3∗

[
bk(ϕ),

[
bl (ψ) , c̃∗

p

]∗] =
⎧
⎨

⎩

−1Ll (p + l)
〈
ep+l , ψ

〉 [
bk(ϕ), c̃∗

p+l

]
p ∈ BF

1Ll (p)
〈
ep, ψ

〉 [
bk(ϕ), c̃∗

p−l

]
p ∈ Bc

F

=
{

−1Lk (p + l)1Ll (p + l)
〈
ϕ, ep+l

〉 〈
ep+l , ψ

〉
c̃p+l−k p ∈ BF

−1Lk (p − l + k) 1Ll (p)
〈
ϕ, ep−l+k

〉 〈
ep, ψ

〉
c̃p−l+k p ∈ Bc

F
.

(4.57)

The estimates are the following:

Proposition 4.11. For any collection of symmetric operators (Bk) and ∈ HN it holds
that

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
, c̃∗

p2

[
bk

(
Bkep1

)
,
[
bl

(
Klep4

)
, c̃∗

p3

]∗]


〉∣
∣
∣ ,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
∣

〈

,
[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p2

]∗]∗
c̃p3

〉∣
∣
∣
∣ ,

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
,

[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]


〉∣
∣
∣ ,

are all bounded by

Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

max
p∈Lk

‖h− 1
2

k Bkep‖2 〈,NE〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. For these estimates we consider only the case Sk = Lk for the sake of clarity,
i.e. we let

(p1, p2, p3, p4) = (p,−p + l,−p + k, p) ; (4.58)

the case Sk = Lk − k can be handled by similar manipulations.
Using the identity of equation (4.57) we start by estimating (by the bound of Propo-

sition 4.9)
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

∣
∣
∣
〈
, c̃∗p2

[
bk

(
Bkep1

)
,
[
bl

(
Klep4

)
, c̃∗p3

]∗]


〉∣
∣
∣

=
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

∣
∣
∣1Lk (p3 + l)1Ll (p3 + l)

〈
Bkep1 , ep3+l

〉 〈
ep3+l , Klep4

〉 〈
, c̃∗p2 c̃ p3+l−k

〉∣
∣
∣

≤ C
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

1Lk (p3 + l)
∣
∣
〈
Bkep1 , ep3+l

〉∣
∣

V̂l k
−1
F 1Lk (p2 + k)1Ll (p3 + l)

√
λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

〈
, c̃∗p2 c̃ p2

〉

≤ Ck−1
F

∑

l∈Z3∗
V̂l

∑

p∈Ll

√
√
√
√
√

∑

k∈Z3∗
1Lk (p)1Lk (p3 + l)

∣
∣
∣
∣

〈

ep, h
− 1

2
k Bkep3+l

〉∣
∣
∣
∣

2
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·
√
√
√
√

∑

k∈Z3∗

1Ll (p3 + l)

λl,p3+l

〈
, c̃∗−p+l c̃−p+l

〉

≤ Ck
− 1

2
F

∑

l∈Z3∗
V̂l

∑

p∈(Ll−l)

√
√
√
√
√

∑

k∈Z3∗
1Lk (p + l)1Lk (p3)

∣
∣
∣
∣

〈

ep+l , h
− 1

2
k Bkep3

〉∣
∣
∣
∣

2 〈
, c̃∗−pc̃−p

〉

≤ Ck
− 1

2
F

∑

p∈BF

√
√
√
√

∑

l∈Z3∗
V̂ 2
l

√
√
√
√
√

∑

k,l∈Z3∗
1Lk (p + l)1Lk (p3)

∣
∣
∣
∣

〈

ep+l , h
− 1

2
k Bkep3

〉∣
∣
∣
∣

2 〈
, c̃∗−pc̃−p

〉

≤ Ck
− 1

2
F

√
√
√
√
√

∑

k∈Z3∗
max
p∈Lk

‖h− 1
2

k Bkep‖2
√
√
√
√

∑

l∈Z3∗
V̂ 2
l 〈,NE〉 (4.59)

where we used
∑

k∈Z3∗ 1Ll (p3 + l)λ−1
l,p3+l

≤ ∑
q∈Ll λ

−1
l,q ≤ CkF . From (4.57) we have

[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p

]∗]

= −1Ll (p2 + k)1Lk (p2 + k)
〈
Klep4 , ep2+k

〉 〈
ep2+k, Bkep1

〉
c̃p2+k−l

= −1Lk (p2 + k)1Ll (p3 + l)
〈
Klep4 , ep3+l

〉 〈
ep2+k, Bkep1

〉
c̃p3 (4.60)

so the second term can be similarly estimated as

∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
∣

〈

,
[
bl

(
Klep4

)
,
[
bk

(
Bkep1

)
, c̃∗

p2

]∗]∗
c̃p3

〉∣
∣
∣
∣

≤ C
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

V̂lk
−1
F 1Lk (p2 + k)1Ll (p3 + l)

√
λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

∣
∣
〈
ep2+k, Bkep1

〉∣
∣
〈
, c̃∗

p3 c̃p3
〉

≤ Ck−1
F

∑

k∈Z3∗

∑

p∈Lk

√
√
√
√

∑

l∈Z3∗

1Ll (p)
V̂ 2
l

λl,p4

√
√
√
√

∑

l∈Z3∗

1Lk (p2 + k)

∣
∣
∣
∣

〈

ep2+k, h
− 1

2
k Bkep1

〉∣
∣
∣
∣

2

〈
, c̃∗−p+k c̃−p+k

〉

≤ Ck−1
F

∑

p∈BF

∑

k∈Z3∗

1Lk−k(p)

√
√
√
√

∑

l∈Z3∗

V̂ 2
l
1Ll (p + k)

λl,p+k
‖h− 1

2
k Bkep+k‖

〈
, c̃∗−pc̃−p

〉

≤ Ck−1
F

∑

p∈BF

√
√
√
√

∑

l∈Z3∗

V̂ 2
l

∑

k∈Z3∗

1Ll (p + k)

λl,p+k

√
√
√
√

∑

k∈Z3∗

‖h− 1
2

k Bkep+k‖2
〈
, c̃∗−pc̃−p

〉

≤ Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

max
p∈Lk

‖h− 1
2

k Bkep‖2
√∑

l∈Z3∗

V̂ 2
l 〈,NE〉 . (4.61)

Finally, from (4.51) and (4.54) we see that
[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]
is equal

to

1Lk (p2 + k)1Ll (p3 + l)
〈
Bkep1 , ep2+k

〉 〈
ep3+l , Klep4

〉
c̃∗
p3+l c̃p2+k, (4.62)
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so we estimate
∑

k,l∈Z3∗

∑

p∈Sk∩Sl

∣
∣
∣
〈
,

[
bl

(
Klep4

)
, c̃∗

p3

]∗ [
bk

(
Bkep1

)
, c̃∗

p2

]


〉∣
∣
∣

≤ C
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

V̂l k
−1
F 1Lk (p2 + k)1Ll (p3 + l)

√
λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

∣
∣
〈
Bkep1 , ep2+k

〉∣
∣
〈
, c̃∗

p3+l c̃p2+k
〉

≤ Ck−1
F

∑

p∈Bc
F

∑

k,l∈Z3∗

1Lk∩Ll (p)1Lk∩Ll (−p + k + l)
V̂l

√
λl,p

∣
∣
∣
∣

〈

ep, h
− 1

2
k Bke−p+k+l

〉∣
∣
∣
∣

·
〈
, c̃∗−p+k+l c̃−p+k+l

〉

= Ck−1
F

∑

p∈Bc
F

∑

k,l∈Z3∗

1Lk∩Ll (p + k + l)1Lk∩Ll (−p)
V̂l

√
λl,p+k+l

∣
∣
∣
∣

〈

ep+k+l , h
− 1

2
k Bke−p

〉∣
∣
∣
∣

〈
, c̃∗−pc̃−p

〉

≤ Ck−1
F

∑

p∈Bc
F

√
√
√
√

∑

k,l∈Z3∗

1Lk (p + k + l)1Lk (−p)

∣
∣
∣
∣

〈

ep+k+l , h
− 1

2
k Bke−p

〉∣
∣
∣
∣

2

·
√
√
√
√

∑

k,l∈Z3∗

V̂ 2
l
1Ll (p + k + l)

λl,p+k+l

〈
, c̃∗−pc̃−p

〉

≤ Ck
− 1

2
F

√
√
√
√

∑

k∈Z3∗

max
p∈Lk

‖h− 1
2

k Bkep‖2
√∑

l∈Z3∗

V̂ 2
l 〈,NE〉 . (4.63)

��
The E2

k bound of Theorem 4.1 now follows:

Proposition 4.12. For any  ∈ HN and t ∈ [0, 1] it holds that

∑

k∈Z3∗

∣
∣
∣
〈
,

(
E2
k (Bk(t))−

〈
ψFS, E2

k (Bk(t))ψFS

〉)


〉∣
∣
∣≤C

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,N 3

E
〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. Clearly

max
p∈Lk

∥
∥Bkep

∥
∥2 ≤

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 , max

p∈Lk
‖h− 1

2
k Bkep‖2 ≤ ‖Bkh

− 1
2

k ‖2HS,

(4.64)

for any Bk , and as our estimate for Bk(t) in Theorem 3.1 is the same as that for Ak(t),
the bounds

∑

k∈Z3∗

∑

p∈Lk

max
q∈Lk

∣
∣
〈
ep, Bkeq

〉∣
∣2 , k−1

F

∑

k∈Z3∗

‖Bkh
− 1

2
k ‖2HS≤C

(
1 + ‖V̂ ‖4∞

) ∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

follow exactly as those of Proposition 4.7. Insertion into the Propositions 4.8, 4.10 and
4.11 yields the claim. ��
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4.3. Analysis of the exchange contribution. Finally we determine the leading order of
the exchange contribution. To begin we derive a general formula for a quantity of the
form

〈
ψFS, E2

k (Bk)ψFS
〉
: We can write

− 2
〈
ψFS, E2

k (Bk)ψFS

〉

= −
∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll

〈
ψFS, bk(Bkep)ε−k,−l(e−p; e−q)b

∗
l (Kleq)ψFS

〉

=
∑

l∈Z3∗

∑

p∈Lk∩Ll

〈
ψFS, bk(Bkep)c̃

∗−p+l c̃−p+kb
∗
l

(
Klep

)
ψFS

〉

+
∑

l∈Z3∗

∑

p∈(Lk−k)∩(Ll−l)

〈
ψFS, bk

(
Bkep+k

)
c̃∗−p−l c̃−p−kb

∗
l

(
Klep+l

)
ψFS

〉

=: A + B (4.65)

where, using equation (4.22) in the form

[
bl (ψ) , c̃∗

p

]
=

{
−∑

q∈Ll δp,q−l
〈
ψ, eq

〉
c̃q p ∈ BF∑

q∈(Ll−l) δp,q+l
〈
ψ, eq+l

〉
c̃q p ∈ Bc

F
, (4.66)

the terms A and B are given by

A =
∑

l∈Z3∗

∑

p∈Lk∩Ll

〈
ψFS,

[
bk(Bkep), c̃

∗−p+l

] [
bl

(
Klep

)
, c̃∗−p+k

]∗
ψFS

〉

=
∑

l∈Z3∗

∑

p∈Lk∩Ll

〈

ψFS,

⎛

⎝
∑

q∈Lk

δ−p+l,q−k
〈
Bkep, eq

〉
c̃q

⎞

⎠

⎛

⎝
∑

q ′∈Ll
δ−p+k,q ′−l

〈
eq ′ , Klep

〉
c̃∗
q ′

⎞

⎠ψFS

〉

=
∑

l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l
〈
ep, Bkeq

〉 〈
eq , Klep

〉
(4.67)

and similarly

B =
∑

l∈Z3∗

∑

p∈(Lk−k)∩(Ll−l)

〈
ψFS,

[
bk

(
Bkep+k

)
, c̃∗−p−l

] [
bl

(
Klep+l

)
, c̃∗−p−k

]∗
ψFS

〉

=
∑

l∈Z3∗

∑

p,q∈(Lk−k)∩(Ll−l)

δ−p−q,k+l
〈
ep+k, Bkeq+k

〉 〈
eq+l , Klep+l

〉
. (4.68)

Although non-obvious, there holds the identity A = B. To see this we rewrite both terms:
First, for A, we note that the presence of the δp+q,k+l makes the Ll of the summation
p, q ∈ Lk ∩ Ll redundant: For any p, q ∈ Bc

F there holds the equivalence

p, q ∈ L p+q−k ⇐⇒ p, q ∈ Lk (4.69)
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by the trivial identities

|p − k| = |q − (p + q − k)| , |q − k| = |p − (p + q − k)| , (4.70)

so A can be written as

A =
∑

p,q∈Lk

∑

l∈Z3∗

δp+q,k+l
〈
ep, Bkeq

〉 〈
eq , Klep

〉 =
∑

p,q∈Lk

〈
ep, Bkeq

〉 〈
eq , Kp+q−kep

〉
.

(4.71)

A similar observation applies to B: For any p, q ∈ BF we likewise have

p, q ∈ (
L−p−q−k + p + q + k

) ⇐⇒ p + k, q + k ∈ L p+q+k ⇐⇒ p, q ∈ (Lk − k)

(4.72)

so

B =
∑

p,q∈(Lk−k)

∑

l∈Z3∗

δ−p−q,k+l
〈
ep+k, Bkeq+k

〉 〈
eq+l , Klep+l

〉

=
∑

p,q∈(Lk−k)

〈
ep+k, Bkeq+k

〉 〈
e−p−k, K−p−q−ke−q−k

〉

=
∑

p,q∈Lk

〈
ep, Bkeq

〉 〈
eq , Kp+q−kep

〉
(4.73)

where we lastly used that the kernels Kk obey

〈
e−p, K−ke−q

〉 = 〈
ep, Kkeq

〉 = 〈
eq , Kkep

〉
, k ∈ Z

3∗, p, q ∈ Lk . (4.74)

In all we thus have the identity
〈
ψFS, E2

k (Bk)ψFS

〉
= −

∑

l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l
〈
ep, Bkeq

〉 〈
eq , Klep

〉

= −
∑

p,q∈Lk

〈
ep, Bkeq

〉 〈
eq , Kp+q−kep

〉
. (4.75)

Our matrix element estimates of the last section now yield the following:

Proposition. (4.2) It holds that
∣
∣
∣
∣
∣
∣

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt − Ecorr,ex

∣
∣
∣
∣
∣
∣
≤ C

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k , where

Ecorr,ex = k−2
F

4 (2π)6

∑

k∈Z3∗

∑

p,q∈Lk

V̂k V̂p+q−k

λk,p + λk,q
.



The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas 1511

Proof. Since all the one-body operators are real-valued we can drop the Re (·) and apply
the above identity for

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt =

∑

k∈Z3∗

2

〈

ψFS, E2
k

(∫ 1

0
Bk(t)dt

)

ψFS

〉

= 2
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l

〈

ep,

(∫ 1

0
Bk(t)dt

)

eq

〉
〈
eq , (−Kl) ep

〉
. (4.76)

Now, note that Ecorr,ex can be written as

Ecorr,ex =
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l
V̂kk

−1
F

2 (2π)3

V̂lk
−1
F

2 (2π)3
1

λl,p + λl,q
(4.77)

since, much as in Proposition 4.5, the δp+q,k+l implies the following identity for the
denominators:

λl,p + λl,q = 1

2

(
|p|2 − |p − l|2

)
+
1

2

(
|q|2 − |q − l|2

)

= 1

2

(
|p|2 − |q − k|2

)
+
1

2

(
|q|2 − |p − k|2

)
= λk,p + λk,q . (4.78)

In conclusion we thus see that

∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(E2
k (Bk(t))

)
ψFS

〉
dt − Ecorr,ex

= 2
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l

(〈

ep,

(∫ 1

0
Bk(t)dt

)

eq

〉

− V̂kk
−1
F

4 (2π)3

)
〈
eq , (−Kl) ep

〉

+
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l
V̂kk

−1
F

2 (2π)3

(
〈
eq , (−Kl) ep

〉− V̂l k
−1
F

2 (2π)3
1

λl,p + λl,q

)

=: A+B.

(4.79)

We estimate A and B. By the matrix element estimates of Theorem 3.1 we have that
(using our freedom to replace λl,p + λl,q by λk,p + λk,q )

|A| ≤ C
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l

(
1 + V̂k

)
V̂ 2
k k

−1
F

V̂lk
−1
F

λl,p + λl,q

≤ Ck−2
F

(
1 + ‖V̂ ‖∞

) ∑

k∈Z3∗

V̂ 2
k

∑

p∈Lk

1
√

λk,p

∑

q∈Lk

V̂p+q−k
√

λk,q

≤ Ck
− 3

2
F

(
1 + ‖V̂ ‖∞

)√∑

l∈Z3∗

V̂ 2
l

∑

k∈Z3∗

V̂ 2
k

∑

p∈Lk

1
√

λk,p

≤ C
(
1 + ‖V̂ ‖∞

)√∑

l∈Z3∗

V̂ 2
l

∑

k∈Z3∗

V̂ 2
k |k| 12 min {1, k

3
2
F |k|− 3

2 } (4.80)
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where we applied the inequality
∑

q∈Lk
λ−1
k,q ≤ CkF and also used that Proposition 3.11

implies that

∑

p∈Lk

1
√

λk,p
≤ Ck

3
2
F |k| 12 min {1, k

3
2
F |k|− 3

2 } (4.81)

for a C > 0 independent of all quantities. By Cauchy-Schwarz we can further estimate

∑

k∈Z3∗

V̂ 2
k |k| 12 min {1, k

3
2
F |k|− 3

2 } ≤
√∑

k∈Z3∗

V̂ 2
k

√∑

k∈Z3∗

V̂ 2
k |k|min {1, k3F |k|−3}

≤
√∑

k∈Z3∗

V̂ 2
k

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } (4.82)

for the bound of the statement. By similar estimation also

|B| ≤ C
∑

k,l∈Z3∗

∑

p,q∈Lk∩Ll

δp+q,k+l V̂kk
−1
F

V̂ 2
l k

−1
F

λl,p + λl,q

≤ C
√∑

k∈Z3∗

V̂ 2
k

∑

l∈Z3∗

V̂ 2
l |l| 12 min {1, k

3
2
F |l|− 3

2 }

and the claim follows likewise. ��

5. Estimation of the Non-Bosonizable Terms and Gronwall Estimates

In this section we perform the final work which will allow us to conclude Theorem 1.1.
The main content of this section lies in the estimation of the non-bosonizable terms,

by which we mean the cubic and quartic terms

C = k−1
F

(2π)3

∑

k∈Z3∗

V̂k Re
((
Bk + B∗−k

)∗
Dk

)
,

Q = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k

⎛

⎝D∗
k Dk −

∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
⎞

⎠ . (5.1)

The cubic terms C will not present a big obstacle to us: As was first noted in [2] (in their
formulation), the expectation value of these in fact vanish identically with respect to the
type of trial state we will consider. The bulk of the work will thus be to estimate the
quartic terms. We prove the following bounds:

Theorem 5.1. It holds that Q = G +QLR +QSR where for any  ∈ HN

|〈,G〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } 〈,NE〉

|〈,QLR〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,N 2

E
〉
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and eKQSRe−K = QSR +
∫ 1
0 etK (2Re (G)) e−tKdt for an operator G obeying

|〈,G〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,

(
N 3

E + 1
)


〉
,

C > 0 being a constant independent of all quantities.

With these all the general bounds are established. As all our error estimates are with
respect to NE and powers thereof, it then only remains to control the effect which the
transformation eK has on these. By a standard Gronwall-type argument this control will
follow from the estimate of Proposition 2.4, and we then end the paper by concluding
Theorem 1.1.

Analysis of the cubic terms. Expanding the Re (·), the cubic terms are

C = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k
((
B∗
k + B−k

)
Dk + D∗

k

(
Bk + B∗−k

))
. (5.2)

The operators Bk can be written simply as Bk = ∑
p∈Lk

bk,p in terms of the excitation
operators bk,p = c∗

p−kcp, whence it is easily seen that

[NE , Bk] = −Bk,
[NE , B∗

k

] = B∗
k . (5.3)

As a consequence, Bk maps the eigenspace {NE = M} into {NE = M − 1} and B∗
k maps

{NE = M} into {NE = M + 1}. Meanwhile, the operators Dk preserve the eigenspaces:
Writing Dk = D1,k + D2,k for

D1,k = d�
(
PBF e

−ik·x PBF

)
=

∑

p,q∈BF

δp,q−kc
∗
pcq = −

∑

q∈BF∩(BF+k)

c̃∗
q c̃q−k

D2,k = d�
(
PBc

F
e−ik·x PBc

F

)
=

∑

p,q∈Bc
F

δp,q−kc
∗
pcq =

∑

p∈Bc
F∩(Bc

F−k)

c̃∗
pc̃p+k (5.4)

these annihilate and create one hole or excitation, respectively, whence [NE , Dk] = 0 =[NE , D∗
k

]
.

It follows thatCmaps the eigenspace {NE = M} into {NE = M − 1}⊕{NE = M + 1}.
Decomposing HN orthogonally as HN = Heven

N ⊕ Hodd
N for

Heven
N =

∞⊕

m=0

{NE = 2m} , Hodd
N =

∞⊕

m=0

{NE = 2m + 1} , (5.5)

we thus see that C maps each subspace into the other. On the other hand, since our
transformation kernel K is of the form

K = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉 (
bl,pb−l,−q − b∗−l,−qb

∗
l,p

)
(5.6)

we note that K maps each {NE = M} into {NE = M − 2} ⊕ {NE = M + 2}, hence K
preserves Heven

N and Hodd
N , and so too does the transformation e−K. As any eigenstate

 ∈ HN of NE is contained in either Heven
N or Hodd

N , and these are orthogonal, we
conclude the following:
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Proposition 5.2. For any eigenstate  of NE it holds that
〈
e−K, Ce−K

〉
= 0.

5.1. Analysis of the quartic terms. Now we consider the quartic terms

Q = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k

⎛

⎝D∗
k Dk −

∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
⎞

⎠ . (5.7)

We begin by rewriting these: Recalling the decomposition Dk = D1,k + D2,k above, we
calculate

D∗
1,k D1,k =

∑

p,q∈BF∩(BF+k)

c̃∗
p−k c̃pc̃

∗
q c̃q−k =

∑

p,q∈BF∩(BF+k)

c̃∗
p−k c̃

∗
q c̃q−k c̃p

+
∑

q∈BF∩(BF+k)

c̃∗
q−k c̃q−k

=
∑

p,q∈BF∩(BF+k)

c̃∗
p−k c̃

∗
q c̃q−k c̃p +

∑

p∈BF

1BF (q + k)c̃∗
q c̃q (5.8)

and similarly

D∗
2,k D2,k =

∑

p,q∈Bc
F∩(Bc

F−k)

c̃∗
p+k c̃pc̃

∗
q c̃q+k =

∑

p,q∈Bc
F∩(Bc

F−k)

c̃∗
p+k c̃

∗
q c̃q+k c̃p

+
∑

p∈Bc
F

1Bc
F
(p − k)c̃∗

pc̃p

=
∑

p,q∈Bc
F∩(Bc

F−k)

c̃∗
p+k c̃

∗
q c̃q+k c̃p +NE −

∑

p∈Bc
F

1BF (p − k)c̃∗
pc̃p. (5.9)

For any k ∈ Z
3∗ we can likewise write

∑
p∈Lk

(
c∗
pcp + cp−kc∗

p−k

)
in the form

∑

p∈Lk

(
c∗
pcp + cp−kc

∗
p−k

)
=

∑

p∈Bc
F

1BF (p − k)c̃∗
pc̃p +

∑

q∈BF

1Bc
F
(q + k)c̃∗

q c̃q

=
∑

p∈Bc
F

1BF (p − k)c̃∗
pc̃p +NE −

∑

q∈BF

1BF (q + k)c̃∗
q c̃q .

(5.10)

Noting that D1,k = 0 for |k| > 2kF , as then BF ∩ (BF + k) = ∅, we thus obtain the
decomposition

Q = G +QLR +QSR (5.11)

where G is the one-body operator

G = k−1
F

(2π)3

∑

k∈Z3∗

V̂k

⎛

⎝
∑

q∈BF

1BF (q + k)c̃∗
q c̃q −

∑

p∈Bc
F

1BF (p − k)c̃∗
pc̃p

⎞

⎠ , (5.12)
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the long-range terms QLR are given by

QLR= k−1
F

2 (2π)3

∑

k∈B(0,2kF )∩Z3∗

V̂k

⎛

⎝
∑

p,q∈BF∩(BF+k)

c̃∗p−k c̃
∗
q c̃q−k c̃p+D

∗
1,k D2,k + D∗

2,k D1,k

⎞

⎠

(5.13)

and the short-range terms QSR are

QSR = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F−k)

c̃∗
p+k c̃

∗
q c̃q+k c̃p. (5.14)

Estimation of G and QLR G and the long-range terms are easily controlled: First,
interchanging the summations we can write G as

G = k−1
F

(2π)3

∑

q∈BF

⎛

⎝
∑

k∈(BF−q)∩Z3∗

V̂k

⎞

⎠ c̃∗
q c̃q − k−1

F

(2π)3

∑

p∈Bc
F

⎛

⎝
∑

k∈(BF+p)∩Z3∗

V̂k

⎞

⎠ c̃∗
pc̃p

(5.15)

from which it is obvious that G obeys

± G ≤ max
p∈Z3∗

⎛

⎝
k−1
F

(2π)3

∑

k∈(BF+p)∩Z3∗

V̂k

⎞

⎠NE . (5.16)

This implies the following:

Proposition 5.3. For any  ∈ HN it holds that

|〈,G〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } 〈,NE〉

for a constant C > 0 independent of all quantities.

Proof. For any p ∈ Z
3 we estimate by Cauchy-Schwarz

∑

k∈(BF+p)∩Z3∗

V̂k ≤
√ ∑

k∈(BF+p)∩Z3∗

V̂ 2
k min {|k| , kF }

√ ∑

k∈(BF+p)∩Z3∗

min {|k| , kF }−1

≤
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

√ ∑

k∈BF\{0}
|k|−1 + k−1

F (5.17)

wherewe lastly used that k �→ min {|k| , kF }−1 is radially decreasing and that (BF + p)∩
Z
3∗ contains at most |BF | points. As it is well-known that

∑
k∈B(0,R)\{0} |k|−1 ≤ CR2

as R → ∞ the bound follows. ��
QLR can be handled in a similar manner:
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Proposition 5.4. For any  ∈ HN it holds that

|〈,QLR〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,N 2

E
〉

for a constant C > 0 independent of all quantities.

Proof. Consider the first term in the parenthesis of (5.13): For any k ∈ Z
3∗ we can

estimate
∑

p,q∈BF∩(BF+k)

∣
∣
∣
〈
, c̃∗p−k c̃

∗
q c̃q−k c̃p

〉∣
∣
∣ ≤

∑

p,q∈BF∩(BF+k)

∥
∥c̃q c̃p−k

∥
∥

∥
∥c̃q−k c̃p

∥
∥

≤
√ ∑

p,q∈BF∩(BF+k)

∥
∥c̃q c̃p−k

∥
∥2

√ ∑

p,q∈BF∩(BF+k)

∥
∥c̃q−k c̃p

∥
∥2 ≤

〈
,N 2

E
〉
. (5.18)

As e.g.

D∗
1,k D2,k =

∑

p∈Bc
F∩(Bc

F−k)

∑

q∈BF∩(BF+k)

c̃∗
q−k c̃q c̃

∗
pc̃p+k

=
∑

p∈Bc
F∩(Bc

F−k)

∑

q∈BF∩(BF+k)

c̃∗
pc̃

∗
q−k c̃q c̃p+k

the terms D∗
1,k D2,k and D∗

2,k D1,k can be handled similarly, whence

|〈,QLR〉| ≤ 3k−1
F

2 (2π)3

⎛

⎝
∑

k∈B(0,2kF )∩Z3∗

V̂k

⎞

⎠
〈
,N 2

E
〉

≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,N 2

E
〉

where
∑

k∈B(0,2kF )∩Z3∗ V̂k was bounded as in equation (5.17). ��

Analysis of QSR Lastly we come to

QSR = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F−k)

c̃∗
p+k c̃

∗
q c̃q+k c̃p. (5.19)

Recall that the transformation K can be written as K = K̃ − K̃∗ for

K̃ = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉
bl,pb−l,−q = 1

2

∑

l∈Z3∗

∑

q∈Ll
bl(Kleq)b−l,−q . (5.20)

To determine eKQSRe−K we will need the commutator [K,QSR] = 2Re
([

K̃,QSR

])
.

Noting that for any p ∈ Bc
F and l ∈ Z

3∗, q ∈ Ll , we have
[
bl,q , c̃

∗
p

]
=

[
c∗
q−l cq , c

∗
p

]
= δp,qc

∗
q−l = δp,q c̃q−l , (5.21)
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we deduce (with the help of Lemma A.1) that

[
K̃, c̃∗

p

]
= 1

2

∑

l∈Z3∗

∑

q∈Ll

(
bl(Kleq)

[
b−l,−q , c̃

∗
p

]
+

[
bl(Kleq), c̃

∗
p

]
b−l,−q

)

= 1

2

∑

l∈Z3∗

∑

q∈Ll

(
bl(Kleq)

[
b−l,−q , c̃

∗
p

]
+

[
bl,q , c̃

∗
p

]
b−l(K−l e−q)

)

= 1

2

∑

l∈Z3∗

∑

q∈Ll

(
bl(Kleq)δp,−q c̃−q+l + δp,q c̃q−lb−l(K−l e−q)

)

=
∑

l∈Z3∗

∑

q∈Ll
δp,−qbl(Kleq)c̃−q+l =

∑

l∈Z3∗

1Ll (−p)bl
(
Kle−p

)
c̃p+l . (5.22)

Using this we conclude the following:

Proposition 5.5. It holds that eKQSRe−K = QSR +
∫ 1
0 etK (2Re (G)) e−tKdt for

G = k−1
F

(2π)3

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)c̃∗
pbl(Kleq)c̃−q+l c̃−q+k c̃p−k

+
k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (p)1Ll (q)
〈
Kleq , ep

〉
c̃p−l c̃−q+l c̃−q+k c̃p−k .

Proof. By the fundamental theorem of calculus

eKQSRe
−K = QSR +

∫ 1

0
etK [K,QSR] e

−tKdt (5.23)

and as noted [K,QSR] = 2Re
([

K̃,QSR

])
. Using equation (5.22) we compute that

G :=
[
K̃,QSR

]
is given by

G = k−1
F

2 (2π)3

∑

k∈Z3∗

V̂k
∑

p∈Bc
F∩(Bc

F+k)

∑

q∈Bc
F∩(Bc

F−k)

(
c̃∗
p

[
K̃, c̃∗

q

]
+

[
K̃, c̃∗

p

]
c̃∗
q

)
c̃q+k c̃p−k

= k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p∈Bc
F∩(Bc

F+k)

∑

q∈Bc
F∩(Bc

F−k)

1Ll (−q)c̃∗
pbl

(
Kle−q

)
c̃q+l c̃q+k c̃p−k

+
k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p∈Bc
F∩(Bc

F+k)

∑

q∈Bc
F∩(Bc

F−k)

1Ll (−p)bl
(
Kle−p

)
c̃p+l c̃

∗
q c̃q+k c̃p−k

= k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p∈Bc
F∩(Bc

F+k)

∑

q∈Bc
F∩(Bc

F−k)

1Ll (−q)
{
bl

(
Kle−q

)
, c̃∗

p

}
c̃q+l c̃q+k c̃p−k

= k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)
{
bl(Kleq), c̃

∗
p

}
c̃−q+l c̃−q+k c̃p−k , (5.24)
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where we for the third inequality substituted p → q and k → −k in the second sum.
By the identity of equation (4.22) the anti-commutator is given by

{
bl(Kleq), c̃

∗
p

}
= 2 c̃∗

pbl(Kleq) + 1Ll (p)
〈
Kleq , ep

〉
c̃p−l (5.25)

which is inserted into the previous equation for the claim. ��
We bound the G operator as follows:

Proposition 5.6. For any  ∈ HN it holds that

|〈,G〉| ≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }

〈
,

(
N 3

E + 1
)


〉

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. Using Proposition 4.4 we estimate the sum of the first term of G as

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)

∣
∣
∣
〈
, c̃∗

pbl(Kleq)c̃−q+l c̃−q+k c̃p−k
〉∣
∣
∣

≤
∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)
∥
∥b∗

l (Kleq)c̃p
∥
∥

∥
∥c̃−q+l c̃−q+k c̃p−k

∥
∥

≤
∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)
∥
∥Kleq

∥
∥ ‖c̃p (NE + 1)

1
2 ‖ ∥

∥c̃p−k c̃−q+l c̃−q+k
∥
∥

≤ ‖(NE + 1) ‖
∑

l∈Z3∗

∑

q∈Ll

∥
∥Kleq

∥
∥

∑

k∈Z3∗

1Bc
F+k

(q)V̂k‖c̃−q+k c̃−q+lN
1
2
E ‖

≤
√∑

k∈Z3∗

V̂ 2
k ‖(NE + 1)‖

∑

l∈Z3∗

∑

q∈Ll

∥
∥Kleq

∥
∥

∥
∥c̃−q+lNE

∥
∥

≤
√∑

k∈Z3∗

V̂ 2
k

⎛

⎝
∑

l∈Z3∗

‖Kl‖HS
⎞

⎠ ‖(NE + 1) ‖ ‖N
3
2
E ‖. (5.26)

Now, the ‖Kk‖HS estimate of Theorem 3.1 and Cauchy-Schwarz lets us estimate

∑

k∈Z3∗

‖Kk‖HS ≤ C
∑

k∈Z3∗

V̂k min {1, k2F |k|−2} ≤ C

√
√
√
√

∑

k∈Z3∗

min {1, k4F |k|−4}
min {|k| , kF }

×
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF },

and

∑

k∈Z3∗

min {1, k4F |k|−4}
min {|k| , kF } =

∑

k∈BF\{0}

1

|k| + k3F
∑

k∈Z3∗\BF

1

|k|4 ≤ Ck2F (5.27)
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for a constant C > 0 independent of all quantities, so in all the first term of G obeys

k−1
F

2 (2π)3

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (q)

∣
∣
∣
〈
, c̃∗

pbl(Kleq)c̃−q+l c̃−q+k c̃p−k
〉∣
∣
∣

≤ C
√∑

k∈Z3∗

V̂ 2
k

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } ‖(NE + 1) ‖ ‖N

3
2
E ‖. (5.28)

Similarly, for the second term (using simply that
∥
∥c̃p−l

∥
∥
Op = 1 at the beginning)

∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (p)1Ll (q)
∣
∣
〈
Kleq , ep

〉 〈
, c̃p−l c̃−q+l c̃−q+k c̃p−k

〉∣
∣

≤ ‖‖
∑

k,l∈Z3∗

V̂k
∑

p,q∈Bc
F∩(Bc

F+k)

1Ll (p)1Ll (q)
∣
∣
〈
Kleq , ep

〉∣
∣
∥
∥c̃p−k c̃−q+l c̃−q+k

∥
∥

≤ ‖‖
∑

l∈Z3∗

∑

q∈Ll

∥
∥Kleq

∥
∥

∑

k∈Z3∗

1Bc
F+k

(q)V̂k‖c̃−q+k c̃−q+lN
1
2
E ‖

≤
√∑

k∈Z3∗

V̂ 2
k

⎛

⎝
∑

l∈Z3∗

‖Kl‖HS
⎞

⎠ ‖‖ ‖N
3
2
E ‖. (5.29)

��

5.2. Gronwall estimates. We now establish control over the operators eKNm
E e−K for

m = 1, 2, 3. Consider first the mapping t �→ etKNEe−tK: Noting that for any ∈ HN

d

dt

〈
, etK (NE + 1) e−tK

〉
=

〈
, e−tK [K,NE ] e

−tK
〉
, (5.30)

Gronwall’s lemma implies that to bound etK (NE + 1) e−tK it suffices to control [K,NE ]
with respect to NE + 1 itself. We determine the commutator: As K = K̃ − K̃∗ for

K̃ = 1

2

∑

l∈Z3∗

∑

p,q∈Ll

〈
ep, Kleq

〉
bl,pb−l,−q (5.31)

and
[
bl,p,NE

] = bl,p it holds that
[
K̃,NE

]
= 2 K̃, whence

[K,NE ] = 2Re
([

K̃,NE

])
= 2 K̃ + 2 K̃∗. (5.32)

The estimate of Proposition 2.4 immediately yields that

± [K,NE ] ≤ C (NE + 1) (5.33)

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k , whence by Gronwall’s lemma

〈
, etK (NE + 1) e−tK

〉
≤ eC|t | 〈, (NE + 1) 〉 ≤ C ′ 〈, (NE + 1) 〉 , |t | ≤ 1.

(5.34)

This proves the bound for NE ; for N 2
E we will as in [10] apply the following lemma:
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Lemma 5.7. Let A, B, Z be given with A > 0, Z ≥ 0 and [A, Z ] = 0. Then if
± [A, [A, B]] ≤ Z it holds that

±[A 1
2 , [A 1

2 , B]] ≤ 1

4
A−1Z .

The estimates are as follows:

Proposition 5.8. For any  ∈ HN and |t | ≤ 1 it holds that

〈
e−tK,

(Nm
E + 1

)
e−tK

〉
≤ C

〈
,

(Nm
E + 1

)


〉
, m = 1, 2, 3,

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. The case of m = 1 was proved above. For m = 2 it suffices to control
[K,N 2

E

]

in terms of N 2
E + 1; by the identity {A, B} = A

1
2 BA

1
2 + [A 1

2 , [A 1
2 , B]] we can write

[
K,N 2

E

]
= {NE , [K,NE ]} = {NE + 1, [K,NE ]} − 2 [K,NE ]

= (NE + 1)
1
2 [K,NE ] (NE + 1)

1
2 + [(NE + 1)

1
2 , [(NE + 1)

1
2 ,

× [K,NE ]]] − 2 [K,NE ] (5.35)

and note that the commutator
[
K̃,NE

]
= 2 K̃ also implies that

[NE , [NE , [K,NE ]]] = 4 [K,NE ] , (5.36)

so by Lemma 5.7 and equation (5.33)

±
[
K,N 2

E

]
≤ C

(
(NE + 1)2 + 1 + (NE + 1)

)
≤ C ′ (N 2

E + 1
)

. (5.37)

Similarly, for N 3
E ,

[
K,N 3

E

]
= 3NE [K,NE ]NE+ [NE , [NE , [K,NE ]]] = 3NE [K,NE ]NE+4 [K,NE ]

(5.38)

implies that

±
[
K,N 3

E

]
≤ C (NE (NE + 1)NE + (NE + 1)) ≤ C ′ (N 3

E + 1
)

(5.39)

hence the m = 3 bound. ��
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Conclusion of Theorem 1.1 We can now conclude:

Theorem. (1.1) It holds that

inf σ (HN ) ≤ EF + Ecorr,bos + Ecorr,ex + C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF }, kF → ∞,

for a constant C > 0 depending only on
∑

k∈Z3∗ V̂
2
k .

Proof. By the variational principle applied to the trial state e−KψFS we have by Propo-
sition 1.2 and the Theorems 1.4, 3.1 and 5.1 that

inf σ (HN ) ≤ EF +

〈

ψFS, eK
⎛

⎜
⎝H ′

kin +
∑

k∈Z3∗

V̂kk
−1
F

2 (2π)3

(
2B∗

k Bk + Bk B−k + B∗−k B
∗
k
)

⎞

⎟
⎠ e−KψFS

〉

+
〈
ψFS, eKCe−KψFS

〉
+

〈
ψFS, eKQe−KψFS

〉

= EF + Ecorr,bos +
〈
ψFS, H ′

kinψFS
〉
+ 2

∑

k∈Z3∗

〈
ψFS, Qk

1

(
e−Kk hke

−Kk − hk
)

ψFS

〉

+
∑

k∈Z3∗

∫ 1

0

〈
e−(1−t)KψFS,

(
εk ({Kk , Bk (t)}) + 2Re

(
E1k (Ak (t))

)

+2Re
(
E2k (Bk (t))

))
e−(1−t)KψFS

〉
dt

+
〈
eKψFS, (G +QLR) e−KψFS

〉
+ 〈ψFS,QSRψFS〉

+
∫ 1

0

〈
e−tKψFS, (2Re (G)) e−tKψFS

〉
dt

= EF + Ecorr,bos + Ecorr,ex + ε1 + ε2 + ε3, (5.40)

where we also used that

H ′
kinψFS = Qk

1(A)ψFS = QSRψFS = 0 (5.41)

and that
〈
ψFS, eKCe−KψFS

〉 = 0 by Proposition 5.2. The errors ε1, ε2 and ε3 obey

ε1 =
∑

k∈Z3∗

∫ 1

0

〈
ψFS, 2Re

(
E2
k (Bk(t))

)
ψFS

〉
dt − Ecorr,ex

≤ C
∑

k∈Z3∗

√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } (5.42)

by Proposition 4.2,

ε2 =
∑

k∈Z3∗

∫ 1

0

〈
e−(1−t)KψFS,

(
εk({Kk , Bk(t)}) + 2Re

(
E1k (Ak(t))

))
e−(1−t)KψFS

〉
dt

+
∑

k∈Z3∗

∫ 1

0

〈
e−(1−t)KψFS,

(
2Re

(
E2k (Bk(t)) −

〈
ψF , E2k (Bk(t))ψF

〉))
e−(1−t)KψFS

〉
dt
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≤ Ck−1
F + C

√
√
√
√

∑

k∈Z3∗

V̂ 2
k min {|k| , kF } ≤ C ′

√
√
√
√

∑

k∈Z3∗

V̂ 2
k min {|k| , kF } (5.43)

by Theorem 4.1, and

ε3 =
〈
e−KψFS, (G +QLR) e−KψFS

〉
+

∫ 1

0

〈
e−tKψFS, (2Re (G)) e−tKψFS

〉
dt

≤ C
√∑

k∈Z3∗

V̂ 2
k min {|k| , kF } (5.44)

by Theorem 5.1, where we for the last error terms also used that

〈
e−tKψFS,

(Nm
E + 1

)
e−tKψFS

〉
≤ C, |t | ≤ 1, m = 1, 2, 3, (5.45)

as follows by Proposition 5.8. ��
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A. Diagonalization of the Bosonizable Terms

In this section we derive the identity of Theorem 1.4. This is to a degree equivalent with
the contents of Section 5 of [10], but for the reader’s convenience, and since the notation
used in the papers differ, we include a brief derivation in this appendix.
To determine the action of eK, we must first compute several commutators involving
K. To simplify the calculations we will make repeated use of the following result ( [10,
Lemma 3.2]).

Lemma A.1. Let (V, 〈·, ·〉) be an n-dimensional Hilbert space and let q : V × V → W
be a sesquilinear mapping into a vector space W. Let (ei )Ni=1 be an orthonormal basis
for V . Then for any linear operators S, T : V → V it holds that

n∑

i=1

q (Sei , T ei ) =
n∑

i=1

q
(
ST ∗ei , ei

)
.

http://creativecommons.org/licenses/by/4.0/
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The lemma is easily proved by orthonormal expansion. In our case, where we regard

2(Lk) as real vector spaces, sesquilinearity is simply bilinearity.Moreover, the operators
Kk satisfy

Ik Kk = K−k Ik (A.1)

where Ik : 
2(Lk) → 
2 (L−k) denotes the unitary mapping defined by Ikep = e−p,
p ∈ Lk . Thus Lemma A.1 allows us to move operators from one argument to another
(when summed), as e.g.

∑

q∈Ll
bl(Kleq)b−l,−q =

∑

q∈Ll
bl(Kleq)b−l

(
Ileq

)

=
∑

q∈Ll
bl

(
eq

)
b−l

(
Il K

∗
l eq

) =
∑

q∈Ll
bl,qb−l(K−l e−q). (A.2)

We start by computing the commutator of K with an excitation operator:

Proposition A.2. For any k ∈ Z
3∗ and ϕ ∈ 
2(Lk) it holds that

[K, bk(ϕ)] = b∗−k (Ik Kkϕ) + Ek(ϕ),
[K, b∗

k (ϕ)
] = b−k (Ik Kkϕ) + Ek(ϕ)∗

where

Ek(ϕ) = 1

2

∑

l∈Z3∗

∑

q∈Ll

{
εk,l

(
ϕ; eq

)
, b∗−l(K−l e−q)

}
.

Proof. It suffices to determine [K, bk(ϕ)]. Using Lemmas A.1 and 1.3 we calculate that

[K, bk(ϕ)] = 1

2

∑

l∈Z3∗

∑

q∈Ll

{[
bk(ϕ), b∗−l

(
e−q

)]
, b∗

l (Kleq)
}

= 1

2

∑

l∈Z3∗

∑

q∈Ll

{
δk,−l

〈
ϕ, e−q

〉
+ εk,−l

(
ϕ; e−q

)
, b∗

l (Kleq)
}

= b∗−k (Ik Kkϕ) + Ek(ϕ) (A.3)

where in the last identity we recognized K−k
∑

q∈L−k

〈
ϕ, e−q

〉
eq = K−k Ikϕ = Ik Kkϕ.

��
Using this relation we can now determine the commutators with Qk

1 terms:

Proposition A.3. For any k ∈ Z
3∗ and symmetric operators A±k : 
2(L±k) → 
2(L±k)

such that Ik Ak = A−k Ik , it holds that
[
K, 2 Qk

1(Ak) + 2 Q−k
1 (A−k)

]
= Qk

2({Kk, Ak}) + 2Re
(
E1
k (Ak)

)
+ (k → −k)

where

E1
k (Ak) =

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll
b∗
k (Akep)

{
εk,l(ep; eq), b∗−l(K−l e−q)

}
.
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Proof. Using Proposition A.2 (and Lemma A.1 together with symmetry of Ak) we find
that

[
K, Qk

1(Ak)
]

=
∑

p∈Lk

(
b∗
k (Akep)

[K, bk
(
ep

)]
+

[K, b∗
k (Akep)

]
bk

(
ep

))

=
∑

p∈Lk

(
b∗−k,−pb

∗
k

(
AkKkep

)
+ bk

(
AkKkep

)
b−k,−p

)

+ 2Re

⎛

⎝
∑

p∈Lk

b∗
k (Akep)Ek

(
ep

)
⎞

⎠

= Qk
2(AkKk) + 2Re

⎛

⎝
∑

p∈Lk

b∗
k (Akep)Ek

(
ep

)
⎞

⎠ . (A.4)

The assumption that Ik Ak = A−k Ik yields Qk
2(AkKk) = Q−k

2 (K−k A−k). Summing
over both k and −k, we obtain the desired identity. ��
To state the commutator of K with Qk

2 terms we note the identity

∑

p∈Lk

bk
(
ep

)
b∗
k (Akep) = Qk

1(Ak) + tr(Ak) + εk(Ak) (A.5)

where we introduced the convenient notation

εk(Ak) =
∑

p∈Lk

εk,k
(
ep; Akep

) = −
∑

p∈Lk

〈
ep, Akep

〉 (
c∗
pcp + cp−kc

∗
p−k

)
. (A.6)

The commutator is then given as follows:

Proposition A.4. For any k ∈ Z
3∗ and symmetric operators B±k : 
2(L±k) → 
2(L±k)

such that Ik Bk = B−k Ik , it holds that

[
K, Qk

2(Bk) + Q−k
2 (B−k)

]
= 2 Qk

1({Kk, Bk}) + tr({Kk, Bk}) + εk({Kk, Bk})
+ 2Re

(
E2
k (Bk)

)
+ (k → −k)

where

E2
k (Bk) = 1

2

∑

l∈Z3∗

∑

p∈Lk

∑

q∈Ll

{
bk(Bkep),

{
ε−k,−l(e−p; e−q), b

∗
l (Kleq)

}}
.

Proof. Writing Qk
2(Bk) = 2Re

(∑
p∈Lk

bk(Bkep)b−k
(
e−p

))
and using Proposition

A.2 we get

[
K, Qk

2(Bk)
]

= 2Re

⎛

⎝
∑

p∈Lk

(
bk(Bkep)

[K, b−k
(
e−p

)]
+

[K, bk(Bkep)
]
b−k

(
e−p

))
⎞

⎠
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= 2Re

⎛

⎝
∑

p∈Lk

(
bk,pb

∗
k

(
Kk Bkep

)
+ b∗−k

(
K−k B−ke−p

)
b−k,−p

)
⎞

⎠

+2Re

⎛

⎝
∑

p∈Lk

(
bk(Bkep)E−k

(
e−p

)
+Ek

(
ep

)
b−k

(
B−ke−p

))
⎞

⎠ = (I)+(II).

For (I), the first term on the right-hand side, using (A.5) we find that

(I) = Qk
1({Kk, Bk}) + tr({Kk, Bk}) + εk({Kk, Bk}) + Q−k

1 ({K−k, B−k}). (A.7)

Summing over k and −k and using E2
k (Bk) = ∑

p∈Lk

{
bk(Bkep), E−k

(
e−p

)}
for (II),

we obtain the desired identity. �
Finally we calculate the commutator with H ′

kin:

Proposition A.5. It holds that
[K, H ′

kin

] =
∑

k∈Z3∗

Qk
2({Kk, hk}).

Proof. By equation (1.34) we have
[
H ′
kin, bk(ϕ)

] = −2 bk (hkϕ) ,
[
H ′
kin, b

∗
k (ϕ)

] = 2 b∗
k (hkϕ) , (A.8)

so using that Ikhk = h−k Ik we find

[K, H ′
kin

] = 1

2

∑

k∈Z3∗

∑

q∈Lk

([
bk

(
Kkeq

)
b−k

(
e−q

)
, H ′

kin

] − [
b∗−k

(
e−q

)
b∗
k

(
Kkeq

)
, H ′

kin

])

=
∑

k∈Z3∗

∑

q∈Lk

(
bk

({Kk, hk} eq
)
b−k

(
e−q

)
+ b∗−k

(
e−q

)
b∗
k

({Kk, hk} eq
))

=
∑

k∈Z3∗

Qk
2({Kk, hk}). (A.9)

��
Now we can now determine the action of eK on quadratic operators:

Proposition A.6. For any k ∈ Z
3∗ and symmetric operators T±k : 
2(L±k) → 
2(L±k)

such that IkTk = T−k Ik it holds that

eK
(
2 Qk

1(Tk) + 2 Q−k
1 (T−k)

)
e−K = tr

(
T 1
k (1) − Tk

)
+ 2 Qk

1(T
1
k (1)) + Qk

2

(
T 2
k (1)

)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

2
k (t)

})
+ 2Re

(
E1
k (T 1

k (t))
)

+2Re
(
E2
k

(
T 2
k (t)

)))
e−(1−t)Kdt + (k → −k)

and

eK
(
Qk

2(Tk) + Q−k
2 (T−k)

)
e−K = tr

(
T 2
k (1)

)
+ 2 Qk

1

(
T 2
k (1)

)
+ Qk

2(T
1
k (1))
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+
∫ 1

0
e(1−t)K

(
εk(

{
Kk, T

1
k (t)

}
) + 2Re

(
E1
k

(
T 2
k (t)

))

+2Re
(
E2
k (T 1

k (t))
))

e−(1−t)Kdt + (k → −k)

where for t ∈ [0, 1],

T 1
k (t) = 1

2

(
etKk Tke

tKk + e−t Kk Tke
−t Kk

)
, T 2

k (t) = 1

2

(
etKk Tke

tKk − e−t Kk Tke
−t Kk

)
.

Proof. We prove the first identity, the second following by a similar argument. Note that
the operators Ak(t) = T 1

k (t), Bk(t) = T 2
k (t) satisfy

A′
k(t) = {Kk, Bk(t)} , B ′

k(t) = {Kk, Ak(t)} , Ak (0) = Tk, Bk (0) = 0.

(A.10)

By Propositions A.3 and A.4 we get

d

dt
e−tK

(
2 Qk

1(Ak(t)) + Qk
2(Bk(t))

)
etK + (k → −k)

= e−tK
(
2 Qk

1

(
A′
k(t)

)
+ Qk

2

(
B ′
k(t)

) −
[
K, 2 Qk

1(Ak(t)) + Qk
2(Bk(t))

])
etK + (k → −k)

= −tr({Kk , Bk(t)}) + e−tK
(
2 Qk

1

(
A′
k(t) − {Kk , Bk(t)}

)
+ Qk

2

(
B ′
k(t) − {Kk , Ak(t)}

))
etK

− e−tK (
εk({Kk , Bk(t)}) + 2Re

(E1
k (Ak(t))

)
+ 2Re

(E2
k (Bk(t))

))
etK + (k → −k) .

The second term on the right-hand side vanishes due to (A.10). Specifying also the initial
conditions in (A.10) we conclude by the fundamental theorem of calculus,

eK
(
2 Qk

1(Tk) + 2 Q−k
1 (T−k)

)
e−K = tr (Ak(1) − Tk) + 2 Qk

1(Ak(1)) + Qk
2(Bk(1))

+
∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2Re

(
E1
k (Ak(t))

)

+2Re
(
E2
k (Bk(t))

))
e−(1−t)Kdt + (k → −k) (A.11)

where we also used that by the assumptions on Ak(t) and Bk(t)
∫ 1

0
tr({Kk, Bk(t)})dt = tr

(∫ 1

0
A′
k(t)dt

)

= tr (Ak(1) − Tk) . (A.12)

The proof of Proposition A.6 is complete. ��
From this we can also easily deduce the action of eK on H ′

kin:

Proposition A.7. It holds that

eKH ′
kine

−K =
∑

k∈Z3∗

tr
(
h1k(1) − hk

)
+ H ′

kin +
∑

k∈Z3∗

(
2 Qk

1

(
h1k(1) − hk

)
+ Qk

2

(
h2k(1)

))

+
∑

k∈Z3∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, h

2
k(t)

})
+ E1

k

(
h1k(t) − hk

)
+ E2

k

(
h2k(t)

))
e−(1−t)Kdt

where for t ∈ [0, 1],

h1k(t) = 1

2

(
etKk hke

tKk + e−t Kk hke
−t Kk

)
, h2k(t) = 1

2

(
etKk hke

tKk − e−t Kk hke
−t Kk

)
.
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Proof. By the Propositions A.3 and A.5 we see that
⎡

⎣K, H ′
kin −

∑

k∈Z3∗

2 Qk
1(hk)

⎤

⎦ = −
∑

k∈Z3∗

2Re
(
E1
k (hk)

)
(A.13)

whence by the fundamental theorem of calculus

eK
⎛

⎝H ′
kin −

∑

k∈Z3∗

2 Qk
1(hk)

⎞

⎠ e−K

= H ′
kin −

∑

k∈Z3∗

2 Qk
1(hk) −

∑

k∈Z3∗

∫ 1

0
etK

(
2Re

(
E1
k (hk)

))
e−tKdt. (A.14)

Applying Proposition A.6 now yields the claim. ��
We are now equipped to conclude Theorem 1.4. By the two previous propositions, we
see that

eKHeffe
−K = eK

⎛

⎝H ′
kin +

∑

k∈Z3∗

(
2 Qk

1(Pk) + Qk
2(Pk)

)
⎞

⎠ e−K

=
∑

k∈Z3∗

tr(Ak(1) − Pk) + H ′
kin +

∑

k∈Z3∗

(
2 Qk

1(Ak(1)) + Qk
2(Bk(1))

)

+
∑

k∈Z3∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + E1

k (Ak(t)) + E2
k (Bk(t))

)
e−(1−t)Kdt

(A.15)

where the operators Ak(t), Bk(t) : 
2(Lk) → 
2(Lk) are given by

Ak(t) = h1k(t) + P1
k (t) + P2

k (t) − hk = 1

2

(
etKk (hk + 2Pk) e

tKk + e−t Kk hke
−t Kk

)
− hk

Bk(t) = h2k(t) + P1
k (t) + P2

k (t) = 1

2

(
etKk (hk + 2Pk) e

tKk − e−t Kk hke
−t Kk

)
.

(A.16)

Now we choose Kk such that Bk(1) = 0. This amounts to the diagonalization condition

eKk (hk + 2Pk) e
Kk = e−Kk hke

−Kk , (A.17)

of which the solution is given in (1.39). Since (A.17) is fulfilled, it follows that also
Ak(1) = e−Kk hke−Kk − hk , and so the identity in Theorem 1.4 follows provided we
can show that

∑

k∈Z3∗

tr
(
e−Kk hke

−Kk − hk − Pk
)

= Ecorr,bos. (A.18)

To establish this final identity we will use the following integral representation of the
square root of a one-dimensional perturbation, first used in [2]:
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Lemma A.8. Let A : V → V be a positive self-adjoint operator. Then for any w ∈ V
and g ∈ R such that A + gPw > 0 it holds that

(A + gPw)
1
2 = A

1
2 +

2g

π

∫ ∞

0

t2

1 + g
〈
w,

(
A + t2

)−1
w

〉 P
(A+t2)

−1
w
dt,

tr
(
(A + gPw)

1
2

)
= tr

(
A

1
2

)
+

1

π

∫ ∞

0
log

(

1 + g

〈

w,
(
A + t2

)−1
w

〉)

dt.

The trace identity (A.18) now follows (note that this is essentially Proposition 7.6 of
[10]):

Proposition A.9. Let F (x) = log (1 + x) − x . For any k ∈ Z
3∗ it holds that

tr
(
e−Kk hke

−Kk − hk − Pk
)

= 1

π

∫ ∞

0
F

⎛

⎝
V̂kk

−1
F

(2π)3

∑

p∈Lk

λk,p

λ2k,p + t2

⎞

⎠ dt.

Proof. By cyclicity of the trace and Lemma A.8, tr
(
e−Kk hke−Kk − hk

)
is equal to

tr

⎛

⎝

(

h2k + 2P
h
1
2
k vk

) 1
2
⎞

⎠ = 1

π

∫ ∞

0
log

(

1 + 2

〈

vk, hk
(
h2k + t2

)−1
vk

〉)

dt. (A.19)

The claim follows by inserting the definition of hk and vk , and noting also that

2

π

∫ ∞

0

〈

vk, hk
(
h2k + t2

)−1
vk

〉

dt = V̂kk
−1
F

2 (2π)3
|Lk | = ‖vk‖2 = tr(Pk) (A.20)

where we used the integral identity
∫ ∞
0 a/(a2 + t2)dt = π/2 for every a > 0. ��
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