Skip to main content
Log in

Upper Tail Bounds for Stationary KPZ Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a proof of an upper tail bound of the correct order (up to a constant factor in the exponent) in two classes of stationary models in the KPZ universality class. The proof is based on an exponential identity due to Rains in the case of last passage percolation with exponential weights, and recently re-derived by Emrah–Janjigian–Seppäiläinen (EJS). Our proof follows very similar lines for the two classes of models we consider, using only general monotonocity and convexity properties, and can thus be expected to apply to many other stationary models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baik, J., Deift, P., McLaughlin, K., Miller, P., Zhou, X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5, 6 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balazs, M.: Private communication (2022)

  3. Barraquand, G., Corwin, I.: Random-walk in Beta-distributed random environment. Probab. Theor. Rel. Fields 167, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barraquand, G., Corwin, I., Dimitrov, E.: Maximal free energy of the log-gamma polymer (2021). arXiv:2105.05283

  5. Basu, R., Ganguyly, S.: Connectiing eigenvalue rigidity with polymer geometry: diffusive transversal fluctuations under large deviation (2019). arXiv:1902.09510

  6. Basu, R., Ganguly, S., Hegde, M., Krishnapur, M.: Lower deviations in \(\beta \)-ensembles and law of iterated logarithm in last passage percolation. Isr. J. Math. 242, 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theor. Rel. Fields 158, 225–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1+ 1 dimension. Commun. Pure Appl. Math. 67(7), 1 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Corwin, I., Ferrari, P., Veto, B.: Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18(1), 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corwin, I.: Private communication (2021)

  11. Cafasso, M., Claeys, T.: A Riemann–Hilbert approach to the lower tail of the Kardar–Parisi–Zhang Equation. Commun. Pure Appl. Math. 75, 3 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaumont, H., Noack, C.: Fluctuation exponents for stationary exactly solvable lattice polymer models via a Mellin transform framework. In: ALEA, vol. 15 (2018)

  13. Corwin, I., Ghosal, P.: KPZ equation tails for general initial data. Electron. J. Probab. 25, 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corwin, I., Ghosal, P.: Lower tail of the KPZ equation. Duke Math. J. 169, 7 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Corwin, I., Hegde, M.: The lower tail of \( q \)-pushTASEP (2022). arXiv:2212.06806

  16. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer. J. Stat. Phys. 160, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, S., Tsai, L.-C.: Fractional moments of the stochastic heat equation. Ann. Inst. H. Poincaré Probab. Stat. 57, 2 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Emrah, E., Georgiou, N., Ortmann, J.: Coupling derivation of optimal-order central moment bounds in exponential last-passage percolation (2022). arXiv:2204.06613

  19. Emrah, E., Janjigian, C., Seppäläinen, T.: Right-tail moderate deviations in the exponential last-passage percolation (2020). arXiv:2004.04285

  20. Emrah, E., Janjigian, C., Seppäläinen, T.: Optimal-order exit point bounds in exponential last-passage percolation via the coupling technique (2021). arXiv:2105.09402

  21. Georgiou, N., Seppäläinen, T.: Large deviation rate functions for the partition function in a log-gamma distributed random potential. Ann. Probab. 41, 6 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Imamura, T., Sasamoto, T.: Free energy distribution of the stationary O’Connell–Yor directed random polymer model. J. Phys. A. 50, 28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 2 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Landon, B., Noack, C., Sosoe. P.: KPZ-type fluctuation exponents for interacting diffusions in equilibrium. Ann. Probab. (2023)

  25. Landon, B., Sosoe, P.: Tail bounds for the O’Connell–Yor polymer (2022). arXiv:2209.12704

  26. Moreno Flores, G., Seppäläinen, T., Valkó, B.: Fluctuation exponents for directed polymers in the intermediate disorder regime. Electron. J. Probab. 19, 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noack, C., Sosoe, P.: Concentration for integrable directed polymer models. Ann. Inst. H. Poincaré Probab. Stat. 58(1), 34–64 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96, 2 (2001)

    MathSciNet  MATH  Google Scholar 

  30. O’Connell, N., Ortmann, J.: Tracy–Widom asymptotics for a random polymer model with gamma-distributed weights. Electron. J. Probab. 20, 1 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Rains, E.: A mean identity for longest increasing subsequence problems (2000). arXiv:math/0004082

  32. Seppäiläinen, T.: Scaling for a one dimensional directed polymer with boundary conditions. Ann. Probab. 40, 1 (2012)

    MathSciNet  Google Scholar 

  33. Seppäläinen, T.: Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Rel. Fields 4, 4 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Seppäläinen, T., Valkó, B.: Bounds for scaling exponents for a 1+1 dimensional directed polymer in a Brownian environment. ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010)

  35. Thiery, T., LeDoussal, P.: On integrable directed polymer models on the square lattice. J. Phys. A 48, 46 (2015)

    Article  MathSciNet  Google Scholar 

  36. Tsai, L.-C.: Exact lower-tail large deviations of the KPZ equation. Duke Math. J. 1, 1–44 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Weiss, T., Ferrari, P., Spohn, H.: Reflected Brownian Motions in the KPZ Universality Class. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  38. Xie, Y.: Limit Distributions and Deviation Estimates of Random Walks in Dynamic Random Environments, PhD Thesis, Purdue University (2022)

Download references

Acknowledgements

The work of B.L. is supported by an NSERC Discovery grant. B.L. thanks Amol Aggarwal and Duncan Dauvergne for helpful and illuminating discussions. The work of P.S. is partially supported by NSF grants DMS-1811093 and DMS-2154090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sosoe.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Tail Estimates from Moment Generating Functions

A Tail Estimates from Moment Generating Functions

Proposition A.1

Let X be a random variable, and constants \(c, C, \delta >0\) and \(N \ge 1\) such that the estimates,

$$\begin{aligned} c \mathrm {e}^{ c N a^3} \le \mathbb {E}\left[ \mathrm {e}^{ a X} \right] \le C \mathrm {e}^{ C N a^3} \end{aligned}$$
(48)

hold for all \(a \le \delta N\). Then there are constants \(c', C'>0\) and \(\delta ' >0\) depending only on \(c, C, \delta \) so that

$$\begin{aligned} c' \mathrm {e}^{ - C' u^{3/2} N^{-1/2} } \le \mathbb {P}\left[ X > u \right] \le C' \mathrm {e}^{ - c' u^{3/2} N^{-1/2} } \end{aligned}$$
(49)

for \(0< u < \delta ' N\). If only the upper bound holds in (48) then the upper bound still holds in (49).

Proof

The upper bounds follows from Markov’s inequality. For the lower bound, let \(u_0 >0\). Then let \(\delta> 2 a >0\) and \(0< u_0 < u_1\). Then,

$$\begin{aligned} c \mathrm {e}^{ c N a^3} \le \mathbb {E}[ \mathrm {e}^{a X} ] \le \mathrm {e}^{ a u_1} \mathbb {P}[ X> u_0] + \mathrm {e}^{ a u_0} + \mathbb {E}[ \mathrm {e}^{2 a X} ]^{1/2} \mathbb {P}[ X > u_1 ]^{1/2} \end{aligned}$$

Choosing \(a = C' (u_0 / N)^{1/2}\) for some large \(C' >0\) (and assuming \(u_0\) sufficiently small so that the requirement \(2a < \delta \) is respected) we see that

$$\begin{aligned} c \mathrm {e}^{ c N a^3} \le \mathbb {E}[ \mathrm {e}^{a X} ] \le \mathrm {e}^{ a u_1} \mathbb {P}[ X> u_0]+ \mathbb {E}[ \mathrm {e}^{2 a X} ]^{1/2} \mathbb {P}[ X > u_1 ]^{1/2} \end{aligned}$$

for some new \(c>0\). By our upper bounds and choice of a,

$$\begin{aligned} \mathbb {E}[ \mathrm {e}^{2 a X} ]^{1/2} \mathbb {P}[ X > u_1 ]^{1/2} \le C \mathrm {e}^{ C C'^3 u_0^{3/2} N^{-1/2}} \mathrm {e}^{ - c u_1^{3/2} N^{-1/2}}. \end{aligned}$$

Taking \(u_1 = C'' u_0\) for some large \(C'' >0\) we see that,

$$\begin{aligned} c \mathrm {e}^{ c N a^3} \le \mathrm {e}^{ a u_1} \mathbb {P}[ X > u_0]. \end{aligned}$$

This yields the claim. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landon, B., Sosoe, P. Upper Tail Bounds for Stationary KPZ Models. Commun. Math. Phys. 401, 1311–1335 (2023). https://doi.org/10.1007/s00220-023-04669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04669-x

Navigation