Skip to main content
Log in

Prandtl–Batchelor Flows on a Disk

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For steady two-dimensional flows with a single eddy (i.e. nested closed streamlines), Prandtl (Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des III. Internationalen Mathematiker Kongresses, Heidelberg, 1905) and Batchelor (J Fluid Mech 7(1):177–190, 1956) proposed that in the limit of vanishing viscosity the vorticity is constant in an inner region separated from the boundary layer. In this paper, by constructing higher order approximate solutions of the Navier–Stokes equations and establishing the validity of Prandtl boundary layer expansion, we give a rigorous proof of the existence of Prandtl–Batchelor flows on a disk with the wall velocity slightly different from the rigid-rotation. The leading order term of the flow is the constant vorticity solution (i.e. rigid rotation) satisfying the Batchelor–Wood formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 7(1), 177–190 (1956)

    Article  MATH  ADS  Google Scholar 

  2. Chen, Q., Wu,D., Zhang, Z.: On the stability of shear flows of Prandtl type for the steady Navier–Stokes equations, arXiv:2106.04173

  3. Dalibard, A., Masmoudi, N.: Separation for the stationary Prandtl equation. Publ. Math. Inst. Hautes Études Sci. 130, 187–297 (2019)

    Article  MATH  Google Scholar 

  4. Edwards, D.A.: Viscous boundary-layer effects in nearly inviscid cylindrical flows. Nonlinearity 10, 277–290 (1997)

    Article  MATH  ADS  Google Scholar 

  5. Feynman, R.P., Lagerstrom, P.A.: Remarks on high Reynolds number flows in finite domains. Proc. IX Int. Cong. Appl. Mech. Brussels 3, 342–343 (1956)

    Google Scholar 

  6. Gao, C., Zhang, L.: On the steady Prandtl boundary layer expansion, arXiv:2001.10700

  7. Gao,C., Zhang, L.: Remarks on the steady Prandtl boundary layer expansion, arXiv:2107.08372

  8. Gerard-Verat, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations. Arch. Ration. Mech. Anal. 233(3), 1319–1382 (2019)

    Article  MATH  Google Scholar 

  9. Guo,Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate, Ann. PDE (2017). https://doi.org/10.1007/s40818-016-0020-6

  10. Guo, Y., Iyer, S.: Validity of steady Prandtl layer expansions, arXiv:1805.05891v5

  11. Guo, Y., Iyer, S.: Steady Prandtl layer expansions with external forcing, arXiv:1810.06662

  12. Guo, Y., Iyer, S.: Regularity and expansion for steady Prandtl equations. Comm. Math. Phys. 382(3), 1403–1447 (2021)

    Article  MATH  ADS  Google Scholar 

  13. Iyer, S.: Steady Prandtl boundary layer expansions over a rotating disk. Arch. Ration. Mech. Anal. 224(2), 421–469 (2017)

    Article  MATH  Google Scholar 

  14. Iyer, S.: Global steady Prandtl boundary layer over a moving boundary. Peking Math. J., I: 2(2), 155–238 (2019)

    Article  MATH  Google Scholar 

  15. Iyer, S.: Global steady Prandtl boundary layer over a moving boundary. Peking Math. J., II: 2(3–4), 353–437 (2019)

    Article  MATH  Google Scholar 

  16. Iyer, S.: Global steady Prandtl boundary layer over a moving boundary. Peking Math. J., III: 3(1), 47–102 (2020)

    Article  MATH  Google Scholar 

  17. Iyer, S.: Steady Prandtl boundary layer over a moving boundary: nonshear Euler flow. SIAM J. Math. Anal. 51(3), 1657–1685 (2019)

    Article  MATH  Google Scholar 

  18. Iyer, S., Masmoudi, N.: Boundary layer expansions of steady Navier–Stokes equation, arXiv:2103.09170

  19. Iyer, S., Masmoudi, N.: Global-in-x stability of steady Prandtl expansions for 2D Navier–Stokes flows, arXiv:2008.12347

  20. Kim, S.-C.: On Prandtl-Batchelor theory of a cylindrical eddy: asymptotic study. SIAM J. Appl. Math. 58, 1394–1413 (1998)

    Article  MATH  Google Scholar 

  21. Kim, S.-C.: On Prandtl-Batchelor theory of a cylindrical eddy: existence and uniqueness. Z. Angew. Math. Phys. 51, 674–686 (2000)

    Article  MATH  Google Scholar 

  22. Kim, S.-C.: Asymptotic study of Navier–Stokes flows. Trends Math. Inf. Center Math. Sci. 6, 29–33 (2003)

    Google Scholar 

  23. Kim, S.C., Childress, S.: Vorticity selection with multiple eddies in two-dimensional steady flow at high Reynolds number. SIAM J. Appl. Math. 61(5), 1605–1617 (2001)

    Article  MATH  Google Scholar 

  24. Kim, S.C.: A free-boundary problem for Euler flows with constant vorticity. Appl. Math. Lett. 12, 101–104 (1999)

    Article  MATH  Google Scholar 

  25. Kim, S. C.: On Prandtl-Batchelor theory of steady flow at large Reynolds number, Ph.D Thesis, New York University, (1996)

  26. Kim, S.C.: Batchelor-Wood formula for negative wall velocity. Phys. Fluids 11, 1685–1687 (1999)

    Article  MATH  ADS  Google Scholar 

  27. Maslowe, S.A.: Critical layers in shear flows. Ann. Rev. Fluid Mech. 18(1), 405–432 (1986)

    Article  MATH  ADS  Google Scholar 

  28. Moffatt, H.K., Dormy, E.: Self-exciting Fluid Dynamos. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  29. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  30. Okamoto, H.: A variational problem arising in the two-dimensional Navier-Stokes equation with vanishing viscosity. Appl. Math. Lett. 7(1), 29–33 (1994)

    Article  MATH  Google Scholar 

  31. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, 15. Champan and Hall/CRC, Boca Raton, FL (1999)

    MATH  Google Scholar 

  32. Pedlosky, J.: Ocean Circulation Theory. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

  33. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des III. Internationalen Mathematiker Kongresses, Heidelberg, 1904, pp. 484–491, Teubner, Leizig. See Gesammelte Abhandlungen II, pp. 575–584 (1905)

  34. Renardy, M.: On non-existence of steady periodic solutions of the Prandtl equations. J. Fluid Mech. 717(R7), 1–5 (2013)

    MATH  ADS  Google Scholar 

  35. Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines. J. Fluid Mech. 133, 133–145 (1983)

    Article  MATH  ADS  Google Scholar 

  36. Rhines, P.B., Young, W.R.: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347–367 (1982)

    Article  MATH  ADS  Google Scholar 

  37. Riley, N.: High Reynolds number flows with closed streamlines. J. Eng. Math. 15, 15–27 (1981)

    Article  MATH  Google Scholar 

  38. Van Wijngaarden, L.: Prandtl–Batchelor flows revisited. Fluid Dyn. Res. 39, 267–278 (2007)

    Article  MATH  ADS  Google Scholar 

  39. Shen, W., Wang, Y., Zhang, Z.: Boundary layer separation and local behavior for the steady Prandtl equation, Adv. Math., 389,107896, 25pp, (2021)

  40. Wang, Y., Zhang, Z.: Global \(C^{\infty }\) regularity of the steady Prandtl equation with favorable pressure gradient. Ann. Inst. H. Poincaré Anal. Non Linéaire 38(6), 1989–2004 (2021)

    Article  MATH  ADS  Google Scholar 

  41. Weiss, N.O.: The expulsion of magnetic flux by eddies. Proc. R. Soc. London, Ser. A 293, 310–328 (1966)

    Article  ADS  Google Scholar 

  42. Wood, W.W.: Boundary layers whose streamlines are closed. J. Fluid Mech. 1(2), 77–87 (1957)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

M. Fei is partially supported by NSF of China under Grant No.11871075 and 11971357. Z. Lin is partially supported by the NSF Grants DMS-1715201 and DMS-2007457. T. Tao is partially supported by the NSF of China under Grant 11901349 and the NSF of Shandong Province grant ZR2019QA001. C. Gao and T. Tao are deeply grateful to professor L. Zhang for very valuable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lin.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: Constant coefficient periodic PDE

In this appendix, we give a brief argument to solve the following problem

$$\begin{aligned} \left\{ \begin{array}{ll} (Q_0)_\theta =u_{e}(1)(Q_0)_{\psi \psi },\\ Q_0(\theta ,\psi )=Q_0(\theta +2\pi ,\psi ),\\ Q_0\big |_{\psi =0}=g(\theta ),\ \ Q_0\big |_{\psi \rightarrow -\infty }=0, \end{array} \right. \end{aligned}$$
(6.1)

where

$$\begin{aligned} g(\theta )=\alpha ^2+2\alpha \eta f(\theta )+\eta ^2 f^2(\theta )-u_{e}^2(1)=2\alpha \eta f(\theta )+\eta ^2 f^2(\theta )-\frac{\eta ^2}{2\pi } \int _0^{2\pi }f^2(\theta )d\theta . \end{aligned}$$

Let \(Q_0(\theta ,\psi )=\sum \limits _{k\in \mathbb {Z}}e^{ik\theta }Q_{0k}(\psi )\) and substitute it into (6.1), we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} ikQ_{0k}=u_{e}(1)Q_{0k}'',\\ Q_{0k}\big |_{\psi =0}={\widehat{g}}(k)=\frac{1}{2\pi }\int _0^{2\pi }e^{-ik\theta }g(\theta ) d\theta , \\ Q_{0k}\big |_{\psi \rightarrow -\infty }=0. \end{array} \right. \end{aligned}$$

It is easy to get

$$\begin{aligned} Q_{0k}(\psi )={\widehat{g}}(k)e^{\alpha _k\psi } \end{aligned}$$

with \(\alpha _k=\sqrt{\frac{|k|}{2u_e(1)}}(1+\text {sgn}k\cdot i)\). Then

$$\begin{aligned} Q_0(\theta ,\psi )=\sum \limits _{k\in \mathbb {Z}}e^{ik\theta }{\widehat{g}}(k)e^{\alpha _k\psi }\in X \end{aligned}$$

and

$$\begin{aligned} \Vert Q_0\Vert _X\le C\eta . \end{aligned}$$
(6.2)

1.2 Appendix B: Construction of corrector \(h(\theta ,r)\)

In this section, we give a construction of the corrector \(h(\theta ,r)\). Firstly, we give a simple lemma.

Lemma 6.1

Assume that \(K(\theta ,r)\) is a \(2\pi \)-periodic smooth function which satisfies

$$\begin{aligned} \int _0^{2\pi }K(\theta ,r)d\theta =0, \ \forall r\in (0,1]; \ K(\theta , 1)=0, \end{aligned}$$

then there exists a \(2\pi \)-periodic function \(h(\theta ,r)\) such that

$$\begin{aligned}&\partial _\theta h(\theta ,r)=K(\theta ,r); \quad h(\theta , 1)=0;\nonumber \\&\int _0^{2\pi }h(\theta ,r)d\theta =0, \quad \Vert \partial _\theta ^j\partial _r^kh\Vert _2\le C\Vert \partial _\theta ^j\partial _r^kK\Vert _2. \end{aligned}$$
(6.3)

Proof

Let

$$\begin{aligned} K(\theta ,r)=\sum _{n\ne 0}K_n(r)e^{in\theta }, \ \ K_n(1)=0. \end{aligned}$$

Set

$$\begin{aligned} h(\theta ,r)=\sum _{n\ne 0}\frac{K_n(r)}{in}e^{in\theta }. \end{aligned}$$

It is easy to justify that \(h(\theta ,r)\) satisfies (6.3) which completes the proof. \(\quad \square \)

Next, we construct the corrector \(h(\theta ,r)\) by the above lemma. Direct computation gives

$$\begin{aligned} u^a_\theta +rv^a_r+v^a=&\varepsilon ^5\partial _\theta h(\theta ,r)+K(\theta ,r), \end{aligned}$$

where

$$\begin{aligned} K(\theta ,r)=&\varepsilon ^5\chi (r)[Y\partial _Yv_p^{(5)}(\theta ,Y)+v_p^{(5)}(\theta ,Y)] +r\chi '(r)\Big (\sum _{i=1}^5\varepsilon ^i v_p^{(i)}(\theta ,Y)\Big ). \end{aligned}$$

Noticing that \(\chi '(r)=0,\ r\in [0,\frac{1}{2}]\cup [\frac{3}{4},1]\) and the property of \(v_p^{(i)}\), we deduce that \(K(\theta ,r)=O(\varepsilon ^5)\) and

$$\begin{aligned} K(\theta ,1)=0. \end{aligned}$$

Moreover, noticing that

$$\begin{aligned} \int _0^{2\pi }v_p^{i}(\theta ,Y)d\theta =0, \ \forall \ Y\le 0,\quad i=1,\cdot \cdot \cdot ,5, \end{aligned}$$

we deduce that

$$\begin{aligned} \int _0^{2\pi }K(\theta ,r)d\theta =0, \ \forall r\in (0,1]. \end{aligned}$$

Thus, we can choose \(h(\theta ,r)\) by Lemma 6.1 such that

$$\begin{aligned} \varepsilon ^5\partial _\theta h(\theta ,r)+K(\theta ,r)=0, \ h(\theta , 1)=0, \ \Vert \partial _\theta ^j\partial _r^kh\Vert _2\le C\varepsilon ^{-k}. \end{aligned}$$

1.3 Appendix C: Prandtl-Batchlor theory on disk

For the convenience of readers, we give an introduction to the Prandtl–Batchelor theory. One can see [1, 20, 21, 30, 42] for more details and physical backgrounds.

Theorem 6.2

We consider the steady Navier–Stokes equations in two dimensional simply-connected domain \(\Omega \)

$$\begin{aligned} \left\{ \begin{array}{ll} \textbf{u}^\varepsilon \cdot \nabla \textbf{u}^\varepsilon +\nabla p^\varepsilon -\varepsilon ^2\Delta \textbf{u}^\varepsilon =0,\\ \nabla \cdot \textbf{u}^\varepsilon =0,\\ \textbf{u}^\varepsilon \cdot \textbf{n}\big |_{\partial \Omega }=0, \ \ \textbf{u}^\varepsilon \cdot \textbf{t}\big |_{\partial \Omega }=g, \end{array} \right. \end{aligned}$$
(6.4)

where \(\textbf{n}\) is the unit normal vector to \(\partial \Omega \), \(\textbf{t}\) is the unit tangential vector to \(\partial \Omega \), and g is a smooth function. We assume that (i) the stream function \(\psi ^\varepsilon \) of Eq. (6.4) has no hyperbolic critical point(i.e. nested closed streamlines and single eddy); (ii) for any \(\Omega _1\subset \subset \Omega \), there exist \(\varepsilon _0>0\) such that for any \(0<\varepsilon <\varepsilon _0\), \(\Omega _1\) is away from the boundary layer of Eq. (6.4) and \(\textbf{u}^\varepsilon \rightarrow \textbf{u}^e\) in \(C^2(\Omega _1)\), where \(\textbf{u}^e\) is a solution of steady Euler equations in \(\Omega \). Then the vorticity \(w^e=\nabla \times \textbf{u}^e\) is a constant in \(\Omega \).

Proof

Let \(\textbf{u}^\varepsilon =(u^\varepsilon ,v^\varepsilon )\) and \(w^\varepsilon =\partial _yu^\varepsilon -\partial _xv^\varepsilon \) be the vorticity, then it is easy to obtain that

$$\begin{aligned} \textbf{u}^\varepsilon \cdot \nabla w^\varepsilon -\varepsilon \Delta w^\varepsilon =0. \end{aligned}$$

The boundary is taken to be defined by \(\psi ^\varepsilon =0\) and \(0<\psi ^\varepsilon <c_1\) throughout the interior of the eddy. For any \(0<c<c_1\), integrating the Navier–Stokes equations over the domain which is surrounded by the closed streamline \(\{(x,y)|\psi ^\varepsilon (x,y)=c\}\) and using the divergence theorem, we obtain

$$\begin{aligned} \int _{\{\psi ^\varepsilon =c\}}\frac{\partial w_\varepsilon }{\partial n}dl=0, \ \ \forall c\in (0,c_1). \end{aligned}$$
(6.5)

Moreover, due to \(\textbf{u}^\varepsilon \rightarrow \textbf{u}^e\) in \(C^2\), then there holds \(w^\varepsilon \rightarrow w^e\) in \(C^1\).

Let \(\psi ^e\) be the associated stream function of Euler equations, then \(w^e=F(\psi ^e).\) In fact, we introduce the action-angle transform \((x,y)\rightarrow (r^{\varepsilon },\theta ^{\varepsilon })\), where

$$\begin{aligned} r^{\varepsilon }=\psi ^{\varepsilon }(x,y) ,\quad \ \frac{2\pi }{v^{\varepsilon }(r)}=\oint _{\left\{ \psi ^{\varepsilon }=r^{\varepsilon }\right\} }\frac{1}{\left| \nabla \psi ^{\varepsilon }\right| },\quad \theta ^{\varepsilon }=v^{\varepsilon }(r) \int _{0}^{l}\frac{dl^{\prime }}{\left| \nabla \psi ^{\varepsilon }\right| }, \end{aligned}$$

and l is the arc-length variable on the curve \(\left\{ \psi ^{\varepsilon }=r^{\varepsilon }\right\} \). Then the transformation \((x,y) \rightarrow (r^{\varepsilon },\theta ^{\varepsilon })\) has Jacobian 1 and the operator \(u^{\varepsilon }\cdot \nabla \) becomes \(v^{\varepsilon }(r)\partial _{\theta ^{\varepsilon }}\). In \(\Omega _{1}\), \(( r^{\varepsilon },\theta ^{\varepsilon }) \rightarrow ( r^{0} ,\theta ^{0})\) in \(C^{1}\) and \(r^{0}=\psi ^{e}\). Then \((\psi ^{e},\theta ^{0}) \) is a coordinate system and the steady vorticity \(\omega ^{e}\) is a single-valued function \(F(\psi ^{e})\).

Taking \(\varepsilon \rightarrow 0\) in (6.5), we obtain

$$\begin{aligned} F'(c)=0, \ \forall c\in (0,c_1). \end{aligned}$$

Thus, \(w_e\) is a constant in \(\Omega \). \(\quad \square \)

Remark 6.3

On the disk \(B_1(0)\): due to \(\vec {u}_e=u_e(\theta ,r)\vec {e}_\theta +v_e(\theta ,r)\vec {e}_r\), we deduce

$$\begin{aligned} w_e=\frac{1}{r}(\partial _r(ru_e)-\partial _\theta v_e)=a, \quad v_e|_{\partial \Omega }=0. \end{aligned}$$

Solving this equation, we obtain

$$\begin{aligned} (u_e,v_e)=\Big (\frac{a}{2}r, 0\Big ), \end{aligned}$$

where a is any constant.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, M., Gao, C., Lin, Z. et al. Prandtl–Batchelor Flows on a Disk. Commun. Math. Phys. 397, 1103–1161 (2023). https://doi.org/10.1007/s00220-022-04520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04520-9

Navigation