Skip to main content
Log in

Genus Zero \(\widehat{\mathfrak {su}}(n)_m\) Wess–Zumino–Witten Fusion Rules Via Macdonald Polynomials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Kac–Walton formula computes the fusion coefficients of genus zero \(\widehat{\mathfrak {su}}(n)_m\) Wess–Zumino–Witten conformal field theories as the structure constants of the fusion algebra in the basis of Schur polynomials. Modulo a relation identifying the nth elementary symmetric polynomial with the unit polynomial, this fusion algebra is obtained from the algebra of symmetric polynomials in n variables by modding out a fusion ideal generated by the Schur polynomials of degree \(m+1\). The present work constructs a refinement of the fusion algebra associated with the Macdonald polynomials at \(q^m t^n=1\). The pertinent refined structure constants turn out to be given by the corresponding parameter specialization of Macdonald’s (qt)-Littlewood–Richardson coefficients that can be expressed alternatively in terms of the refined Verlinde formula. This reveals that the genus zero \(\widehat{\mathfrak {su}}(n)_m\) Wess–Zumino–Witten fusion coefficients can be retrieved directly from the (qt)-Littlewood–Richardson coefficients through the parameter degeneration \((q,t)=\left( \exp \bigl ({\frac{2\pi i}{nc+m}}\bigr ), \exp \bigl ({\frac{2\pi ic}{nc+m}} \bigr )\right) \), \(c\rightarrow 1\). The refinement thus establishes that at the level of the structure constants (qt)-deformation provides a vehicle for performing the reduction modulo the fusion ideal via parameter specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aganagic, M., Shakirov, S.: Refined Chern–Simons theory and knot homology. In: Block, J., Distler, J., Donagi, R., Sharpe, E. (eds.) String-Math 2011, Proceedings Symposium Pure Mathematics, vol. 85, pp. 3–31. American Mathematical Society, Providence, RI (2012)

  • Aganagic, M., Shakirov, S.: Knot homology and refined Chern–Simons index. Commun. Math. Phys. 333, 187–228 (2015)

    Article  ADS  MATH  Google Scholar 

  • Andersen, J.E., Gukov, S., Pei, D.: The Verlinde formula for Higgs bundles. arXiv:1608.01761

  • Andersen, H.H., Stroppel, C.: Fusion rings for quantum groups. Algebr. Represent. Theory 17, 1869–1888 (2014)

    Article  MATH  Google Scholar 

  • Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Teicher, M. (ed.) Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Israel Mathematics Conference Proceedings, vol. 9, pp. 75–96. Bar-Ilan University, Ramat Gan (1996)

  • Bertram, A.: Quantum Schubert calculus. Adv. Math. 128, 289–305 (1997)

    Article  MATH  Google Scholar 

  • Bertram, A., Ciocan-Fontanine, I., Fulton, W.: Quantum multiplication of Schur polynomials. J. Algebra 219, 728–746 (1999)

    Article  MATH  Google Scholar 

  • Blondeau-Fournier, O., Desrosiers, P., Mathieu, P.: Supersymmetric Ruijsenaars–Schneider model. Phys. Rev. Lett. 114, 121602 (2015)

    Article  ADS  Google Scholar 

  • Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4–6. Hermann, Paris (1968)

  • Bressoud, D.M.: Linearization and related formulas for $q$-ultraspherical polynomials. SIAM J. Math. Anal. 12(2), 161–168 (1981)

    Article  MATH  Google Scholar 

  • Cherednik, I.: Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series 319. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • van Diejen, J.F., Emsiz, E.: Discrete harmonic analysis on a Weyl alcove. J. Funct. Anal. 265, 1981–2038 (2013)

    Article  MATH  Google Scholar 

  • van Diejen, J.F., Vinet, L.: The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model. Commun. Math. Phys. 197, 33–74 (1998)

    Article  ADS  MATH  Google Scholar 

  • Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  • Fehér, L., Görbe, T.F.: Trigonometric and elliptic Ruijsenaars–Schneider systems on the complex projective space. Lett. Math. Phys. 106, 1429–1449 (2016)

    Article  ADS  MATH  Google Scholar 

  • Fehér, L., Kluck, T.J.: New compact forms of the trigonometric Ruijsenaars–Schneider system. Nuclear Phys. B 882, 97–127 (2014)

    Article  ADS  MATH  Google Scholar 

  • Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 2003(18), 1015–1034 (2003)

    Article  MATH  Google Scholar 

  • Fulton, F.: Young Tableaux. With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Gasper, G.: Rogers’ linearization formula for the continuous $q$-ultraspherical polynomials and quadratic transformation formulas. SIAM J. Math. Anal. 16, 1061–1071 (1985)

    Article  MATH  Google Scholar 

  • Gepner, D.: Fusion rings and geometry. Commun. Math. Phys. 141, 381–411 (1991)

    Article  ADS  MATH  Google Scholar 

  • Goodman, F.M., Wenzl, H.: Littlewood–Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82, 244–265 (1990)

    Article  MATH  Google Scholar 

  • Görbe, T., Hallnäs, M.A.: Quantization and explicit diagonalization of new compactified trigonometric Ruijsenaars–Schneider systems. J. Integr. Syst. 3(1), xyy015 (2018)

  • Gorsky, E., Neguţ, A.: Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. 104, 403–435 (2015)

    Article  MATH  Google Scholar 

  • Gukov, S., Pei, D.: Equivariant Verlinde formula from fivebranes and vortices. Commun. Math. Phys. 355, 1–50 (2017)

    Article  ADS  MATH  Google Scholar 

  • Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  • Kanno, H., Sugiyama, K., Yoshida, Y.: Equivariant $U(N)$ Verlinde algebra from Bethe/gauge correspondence. J. High Energy Phys. 2019, 97 (2019). https://doi.org/10.1007/JHEP02(2019)097

    Article  MATH  Google Scholar 

  • Kirillov, A.A., Jr.: On an inner product in modular tensor categories. J. Am. Math. Soc. 9, 1135–1169 (1996)

    Article  MATH  Google Scholar 

  • Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • Korff, C.: The su($n$) WZNW fusion ring as integrable model: a new algorithm to compute fusion coefficients. In: Kuniba, A., Nakanishi, T., Okado, M., Takeyama, Y. (eds.) Infinite Analysis 2010–Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu B28, Research Institute for Mathematical Sciences (RIMS), Kyoto, pp. 121–153 (2011)

  • Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys 318, 173–246 (2013)

    Article  ADS  MATH  Google Scholar 

  • Korff, C., Palazzo, D.: Cylindric reverse plane partitions and 2D TQFT. Sém. Lothar. Combin. 80B, 30 (2018)

    MATH  Google Scholar 

  • Korff, C., Palazzo, D.: Cylindric symmetric functions and positivity. Algebr. Combin. 3, 191–247 (2020)

    Article  MATH  Google Scholar 

  • Korff, C., Stroppel, C.: The $\widehat{\mathfrak{sl} }(n)_k$-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200–268 (2010)

    Article  MATH  Google Scholar 

  • Lam, T., Lapointe, L., Morse, J., Shimozono, M.: Affine Insertion and Pieri Rules for the Affine Grassmannian, Memoirs of the American Mathematical Society, vol. 208. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  • Lam, T., Lapointe, L., Morse, J., Schilling, A., Shimozono, M., Zabrocki, M.: $k$-Schur Functions and Affine Schubert Calculus, Fields Institute Monographs 33. Springer, New York (2014)

    MATH  Google Scholar 

  • Lapointe, L., Morse, J.: Quantum cohomology and the $k$-Schur basis. Trans. Am. Math. Soc. 360, 2021–2040 (2008)

    Article  MATH  Google Scholar 

  • Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  • Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, B45a (2000/01)

  • McNamara, P.: Cylindric skew Schur functions. Adv. Math. 205, 275–312 (2006)

    Article  MATH  Google Scholar 

  • Morse, J., Schilling, A.: A combinatorial formula for fusion coefficients. In: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), Nagoya, Japan, pp. 735–744 (2012). hal-01283115

  • Nakajima, H.: Refined Chern–Simons theory and Hilbert schemes of points on the plane. In: Etingof, P., Khovanov, M., Savage, A. (eds.) Perspectives in Representation Theory. Contemporary Mathematics, vol. 610, pp. 305–331. American Mathematical Society, Providence, RI (2014)

    Chapter  Google Scholar 

  • Okuda, S., Yoshida, Y.: G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and commutative Frobenius algebra. J. High Energy Phys. 2014, 3 (2014). https://doi.org/10.1007/JHEP03(2014)003

    Article  Google Scholar 

  • Postnikov, A.: Affine approach to quantum Schubert calculus. Duke Math. J. 128, 473–509 (2005)

    Article  MATH  Google Scholar 

  • Rietsch, K.: Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110, 523–553 (2001)

    Article  MATH  Google Scholar 

  • Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  ADS  MATH  Google Scholar 

  • Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B.A. (ed.) Integrable and Superintegrable Systems, pp. 165–206. World Scientific Publishing Co., Inc, Teaneck, NJ (1990)

    Chapter  Google Scholar 

  • Ruijsenaars, S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems. III. Sutherland type systems and their duals. Publ. Res. Inst. Math. Sci. 31, 247–353 (1995)

    Article  MATH  Google Scholar 

  • Saldarriaga, O.: Fusion algebras, symmetric polynomials, and $S_k$-orbits of ${\mathbb{Z} }^k_N$. J. Algebra 312, 257–293 (2007)

    Article  MATH  Google Scholar 

  • Schottenloher, M.: A Mathematical Introduction to Conformal Field Theory. Lecture Notes in Physics, vol. 759, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Teleman, C.: $K$-theory and the moduli space of bundles on a surface and deformations of the Verlinde algebra. In: Tillmann, U. (ed.) Topology, Geometry and Quantum Field Theory. London Mathematical Society Lecture Note Series, vol. 308, pp. 358–378. Cambridge University Press, Cambridge (2004)

    Chapter  MATH  Google Scholar 

  • Teleman, C., Woodward, C.T.: The index formula for the moduli of $G$-bundles on a curve. Ann. Math. (2) 170, 495–527 (2009)

    Article  MATH  Google Scholar 

  • Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.) Integrable Systems in Quantum Field Theory and Statistical Mechanics. Advanced Studies in Pure Mathematics, vol. 19, pp. 459–566. Academic Press, Boston, MA (1989)

    Google Scholar 

  • Walton, M.A.: Algorithm for WZW fusion rules: a proof. Phys. Lett. B 241, 365–368 (1990)

    Article  ADS  Google Scholar 

  • Walton, M.A.: On affine fusion and the phase model, SIGMA symmetry integrability. Geom. Methods Appl. 8, 086 (2012)

  • Yip, M.: A Littlewood–Richardson rule for Macdonald polynomials. Math. Z. 272, 1259–1290 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Constructive remarks by the referee are gratefully acknowledged. Thanks are also due to Stephen Griffeth and Luc Lapointe for several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. van Diejen.

Ethics declarations

Conflicts of Interest

The author states that there is no conflict of interest.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant # 1210015.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Diejen, J.F. Genus Zero \(\widehat{\mathfrak {su}}(n)_m\) Wess–Zumino–Witten Fusion Rules Via Macdonald Polynomials. Commun. Math. Phys. 397, 967–994 (2023). https://doi.org/10.1007/s00220-022-04506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04506-7

Navigation