Skip to main content
Log in

A Littlewood–Richardson rule for Macdonald polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Macdonald polynomials are orthogonal polynomials associated to root systems, and in the type A case, the symmetric Macdonald polynomials are a common generalization of Schur functions, Macdonald spherical functions, and Jack polynomials. We use the combinatorics of alcove walks to calculate products of monomials and intertwining operators of the double affine Hecke algebra. From this, we obtain a product formula for Macdonald polynomials of general Lie type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baratta W.: Pieri-type formulas for nonsymmetric Macdonald polynomials. Int. Res. Math. Not. 2009, 2829–2854 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Cherednik I.: Macdonald’s evaluation conjectures and difference Fourier transform. Invent. Math. 122, 119–145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cherednik I.: Nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 10, 483–515 (1995)

    Article  MathSciNet  Google Scholar 

  4. van Diejen, J.F., Emsiz, E.: Pieri formulas for Macdonald’s Spherical functions and polynomials. arXiv:1009.4482v1

  5. Gaussent S., Littelmann P.: LS galleries, the path model and MV cycles. Duke Math. J. 127(1), 137–159 (2002)

    MathSciNet  Google Scholar 

  6. Haiman, M.: Cherednik algebras, Macdonald polynomials and combinatorics. In: Proceedings of the ICM, vol. III, pp. 843–872 (2006)

  7. Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Refinements of the Littlewood–Richardson rule. arXiv:0908.3540v3

  8. Lascoux, A.: Schubert and Macdonald polynomials, a parallel. http://phalanstere.univ-mlv.fr~al/

  9. Lenart C.: On combinatorial formulas for Macdonald polynomials. Adv. Math. 220(1), 324–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lenart C., Postnikov A.: A combinatorial model for crystals of Kac–Moody algebras. Trans. Am. Math. Soc. 360, 4349–4381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Littelmann P.: A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras. Invent. Math. 116, 329–346 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Macdonald I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1988)

    Google Scholar 

  13. Macdonald, I.G.: Affine Hecke algebras and orthogonal polynomials, Séminaire N. Bourbaki, exp. no 797, 189–207 (1994–1995)

  14. Macdonald I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  15. Nelsen K., Ram A.: Kosktka–Foulkes polynomials and Macdonald spherical functions. Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 307, 325–370 (2003)

    MathSciNet  Google Scholar 

  16. Ram A.: Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux. Pure Appl. Math. Q. 2(4), 963–1013 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Ram A., Yip M.: A combinatorial formula for Macdonald polynomials. Adv. Math. 226, 309–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Scwher C.: Galleries, Hall–Littlewood polynomials, and structure constants of the spherical Hecke algebra. Int. Math. Res. Not. 2006, 1–31 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Yip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, M. A Littlewood–Richardson rule for Macdonald polynomials. Math. Z. 272, 1259–1290 (2012). https://doi.org/10.1007/s00209-012-0986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-0986-z

Keywords

Navigation