Skip to main content
Log in

Cylindric Versions of Specialised Macdonald Functions and a Deformed Verlinde Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define cylindric versions of skew Macdonald functions P λ/μ (q, t) for the special cases q = 0 or t = 0. Fixing two integers n > 2 and k > 0 we shift the skew diagram λ/μ, viewed as a subset of the two-dimensional integer lattice, by the period vector (n, −k). Imposing a periodicity condition one defines cylindric skew tableaux and associated weight functions. The resulting weighted sums over these cylindric tableaux are symmetric functions. They appear in the coproduct of a commutative Frobenius algebra which is a particular quotient of the spherical Hecke algebra. We realise this Frobenius algebra as a commutative subalgebra in the endomorphisms over a \({U_{q}\widehat{\mathfrak{sl}}(n)}\) Kirillov-Reshetikhin module. Acting with special elements of this subalgebra, which are noncommutative analogues of Macdonald polynomials, on a highest weight vector, one obtains Lusztig’s canonical basis. In the limit qt = 0, this Frobenius algebra is isomorphic to the \({\widehat{\mathfrak{sl}}(n)}\) Verlinde algebra at level k, i.e. the structure constants become the \({\widehat{\mathfrak{sl}}(n)_{k}}\) Wess-Zumino-Novikov-Witten fusion coefficients. Further motivation comes from exactly solvable lattice models in statistical mechanics: the cylindric Macdonald functions discussed here arise as partition functions of so-called vertex models obtained from solutions to the Yang-Baxter equation. We show this by stating explicit bijections between cylindric tableaux and lattice configurations of non-intersecting paths. Using the algebraic Bethe ansatz the idempotents of the Frobenius algebra are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.: The Theory of Partitions, Encyclopedia of Mathematics and its Applications. Reading, MA.-London-Amsterdam: Addison-Wesley, 1976

  2. Ardonne E., Kedem R.: Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas. J. Algebra 308, 270–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awata, H., Kubo, H., Odake, S., Shiraishi, J.: Virasoro-type symmetries in Solvable Models. http://arxiv.org/abs/hep-th/9612233v1, 1996

  4. Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press Inc., Harcourt Brace Jovanovich Publishers, 1989, Reprint of the 1982 original

  5. Berenstein A., Zelevinsky A.: String bases for quantum groups of type A r . Adv. Soviet Math. 16, 51–89 (1993)

    MathSciNet  Google Scholar 

  6. Bertram A., Ciocan-Fontanine I., Fulton W.: Quantum multiplication of Schur polynomials. J. Algebra 219(2), 728–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogoliubov N.M., Izergin A.G., Kitanine N.A.: Correlation functions for a strongly correlated boson system. Nucl. Phys. B 516(3), 501–528 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bogoliubov, N.M., Izergin, A.G., Korepin, V.E.: Quantum inverse scattering method and correlation functions. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1993

  9. Brundan J.: Dual canonical bases and Kazhdan–Lusztig polynomials. J. Algebra 306, 17–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buch A., Kresch A., Tamvakis H.: Gromov-Witten invariants on Grassmannians. J. Amer. Math. Soc. 16, 901–915 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chari V., Lotkev S.: Weyl, Demazure and fusion modules for the current algebra of sl(r + 1). Adv. Math. 207, 928–60 (2006)

  12. Chari, V., Pressley, A.: Quantum affine algebras and their representations. CMS Conf. Proc. 16, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78

  13. Chari V., Pressley A.: Quantum affine algebras and affine Hecke algebras. Pacific J. Math. 174, 295 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Chari V., Pressley A.: Twisted quantum affine algebras. Commun. Math. Phys. 196(2), 461–476 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, 3rd edition. New York: Springer, 2007

  16. Désarménien J., Leclerc B., Thibon J.-Y.: Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory. Séminaire Lotharingien de Combinatoire B32c, 38 (1994)

    Google Scholar 

  17. Feigin, B., Loktev, S.: On generalized Kostka polynomials and the quantum Verlinde rule. In: Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, in: Amer. Math. Soc., Transl. Ser. 2, Vol. 194, Providence, RI: Amer. Math. Soc., 1999, pp. 61–79

  18. Foda, O., Leclerc, B., Okado, M., Thibon, Y.: Ribbon tableaux and q-analogues of fusion rules in WZW conformal field theories. In: Proc. 5th International School on Theoretical Physics (Zajackowo, 1998), Ed. T. Lulek, B. Lulek, A. Wal, Singapore: World Scientific, 1999, pp. 188–201

  19. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179–200 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994)

    Google Scholar 

  20. Fourier G., Littelmann P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211, 566–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Freed, D., Hopkins, M., Teleman, C.: Twisted K-Theory and loop group representations. http://arxiv.org/abs/math/0312155v3 [math-AT], 2005

  22. Fulton, W.: Young tableaux, Volume 35 of London Mathematical Society Student Texts, Cambridge: Cambridge University Press, 1997

  23. Geissinger, L.: Hopf algebras of symmetric functions and class functions. In: Combinatoire et Représentation du Groupe Symétrique Lecture Notes in Mathematics 579, Boston-Heidelberg-New York: Springer, 1977, pp. 168–181

  24. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Rektah, V.S., Thibon, J.-Y.: Noncommutative Symmetric Functions. http://arxiv.org/abs/hep-th/9407124v1, 1994

  25. Gepner D.: Fusion rings and geometry. Commun. Math. Phys. 141, 381–411 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Gerasimov A., Lebedev D., Oblezin S.: On q-deformed gl(l + 1)-Whittaker function III. Lett. Math. Phys. 97, 1–24 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Gessel I.M., Krattenthaler C.: Cylindric Partitions. Trans. Am. Math. Soc. 349, 429–479 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goodman F.M., Wenzl H.: Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82, 244–265 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae, MathPhys Odyssey 2001, 205–272, Prog. Math. Phys. 23, Boston, MA: Birkhäuser Boston, 2002, pp. 205–272

  30. Hayashi T.: Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990)

    Article  ADS  Google Scholar 

  31. Hivert F.: Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions. Adv. Math. 155, 181–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ion B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116, 299–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kac, V.G.: Infinite-dimensional Lie algebras. Second edition, Cambridge: Cambridge University Press, 1985

  34. Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. in Math. 53, 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kashiwara M.: Global crystal bases of quantum groups. Duke Math. J. 69, 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kirillov A.N., Yu N.: Reshetikhin, Bethe ansatz and the combinatorics of Young tableaux. J. Sov. Math. 41, 925–955 (1988)

    Article  MATH  Google Scholar 

  37. Kirillov A.N., Shimozono M.: A generalization of the Kostka–Foulkes polynomials. J. Alg. Comb. 15, 27–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Klimyk, A.U., Schmuedgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics, Heidelberg: Springer-Verlag, 1997

  39. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge: Cambridge University Press, 2003

  40. Korff C., Stroppel C.: The \({\widehat{\mathfrak{sl}}(n)_{k} }\) -WZNW fusion ring: A combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Korff C.: Noncommutative Schur polynomials and the crystal limit of the \({U_{q} \widehat{\mathfrak{sl}}(2)}\) -vertex model. J. of Phys. A: Math. and Theo. 43, 434021 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  42. Korff, C.: The su(n) WZNW fusion ring as integrable model: a new algorithm to compute fusion coefficients. RIMS Kokyuroku Bessatsu B28, 121–153 (2011), available at http://arxiv.org/abs/1106.5342v2 [math-ph], 2012

  43. Korff C.: A Q-operator identity for the correlation functions of the infinite XXZ spin-chain. J. Phys. A: Math. Gen. 38, 6641–6657 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Krattenthaler C., Guttmann A., Viennot X.: Vicious walkers, friendly walkers and Young tableaux: II. With a wall. J. Phys. A 33, 8835–66 (2000)

    Google Scholar 

  45. Krattenthaler C., Guttmann A., Viennot X.: Vicious walkers, friendly walkers, and Young tableaux. III. Between two walls, (English summary) Special issue in honor of Michael E. Fisher’s 70th birthday (Piscataway, NJ, 2001). J. Stat. Phys. 110, 1069–1086 (2003)

  46. Krob D., Thibon J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at q = 0. J. Alg. Comb. 6, 339–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kuniba A., Misra K.C., Okado M., Takagi T., Uchiyama J.: Paths, Demazure Crystals and Symmetric Functions. J. Math. Phys. 41(9), 6477–6486 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Lascoux A., Schützenberger M.P.: Sur une conjecture de H.O. Foulkes. C.R. Acad. Sci. Paris 286A, 323–324 (1978)

    Google Scholar 

  49. Lascoux, A., Schützenberger, M.-P.: Le monoïde plaxique. In: Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), Volume 109 of Quad. “Ricerca Sci.” 129–156 (1981)

  50. Lusztig G.: Singularities, character formulas, and a q-analog of weight multiplicities, Analyse et topologie sur les espaces singuliers (II-III). Asterisque 101-102, 208–227 (1983)

    MathSciNet  Google Scholar 

  51. Lusztig G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3, 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lusztig, G.: Introduction to quantum groups. Progress in Math. 110. Boston, MA: Birkhäuser, 1993

  53. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. 2nd edition, Oxford: Clarendon Press, 1995

  54. McNamara P.: Cylindric skew Schur functions. Adv. Math. 205, 275–312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Peirce B.: Linear Associative Algebra. With notes and addenda, by C. S. Peirce, Son of the Author. Amer. J. Math. 4, 97–229 (1881)

    Article  MathSciNet  Google Scholar 

  56. Postnikov A.: Affine approach to quantum Schubert calculus. Duke Math. J. 128, 473–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories in XVIth Int Congress on Mathematical Physics 2010, Singapore: World Scientific, ed. P. Exner, p. 265

  58. Nelsen, K., Ram, A.: Kostka-Foulkes polynomials and Macdonald spherical functions. Surveys in Combinatorics 2003, C. Wensley ed., London Math. Soc. Lect. Notes 307, Cambridge: Cambridge University Press, 2003, pp. 325–370

  59. Novelli J.-C., Thibon J.-Y., Williams L.K.: Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux. Adv. Math. 224, 1311–1348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Reineke M.: Multiplicative properties of dual canonical bases of quantum groups. J. Algebra 211, 134–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Rimanyi, R., Schechtman, V., Tarasov, V., Varchenko, A.: Cohomology of a flag variety as a Bethe algebra; http://arxiv.org/abs/1102.0816v1 [math.QA], 2011

  62. Rogers L.J.: On a three-fold symmetry in the elements of Heine’s series. Proc. London Math. Soc. 24, 171–179 (1893)

    Article  MATH  Google Scholar 

  63. Sanderson Y.: On the connection between Macdonald polynomials and Demazure characters. J. Alg. Comb. 11, 269–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schiffmann O.: The Hall algebra of a cyclic quiver and canonical bases of Fock spaces. Internat. Math. Res. Notices 2000(8), 413–440 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schilling, A., Shimozono, M.: Bosonic formula for level-restricted paths, Advanced Studies in Pure Mathematics 28, Combinatorial Methods in Representation Theory, 305–325 (2000)

  66. Schilling A., Shimozono M.: Fermionic formulas for level-restricted generalized Kostka polynomials and coset branching functions. Commun. Math. Phys. 220, 105–164 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. Schilling A., Tingley P.: Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. Elect. J. Comb. 19(2), P4 (2002)

    Google Scholar 

  68. Schilling A., Warnaar O.: Inhomogeneous lattice paths, generalized Kostka polynomials and A n-1 supernomials. Commun. Math. Phys. 202, 359–401 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. Serrano L.: The shifted plactic monoid. Math. Z. 266(2), 363–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Suzuki T., Vazirani M.: Tableaux on periodic skew diagrams and irreducible representations of the double affine Hecke algebra of type A. Int. Math. Res. Notices 2005(27), 1621–1656 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Teleman, C.: K-theory and the moduli space of bundles on a surface and deformations of the Verlinde algebra. (English summary). In: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser. 308, Cambridge: Cambridge Univ. Press, 2004, pp. 358–378

  72. Tsilevich N.V.: Quantum inverse scattering method for the q-boson model and symmetric functions. Func. Anal. Apps. 40, 207–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Diejen J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267(2), 451–476 (2006)

    Article  MATH  ADS  Google Scholar 

  74. Verlinde E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  75. Walton M.A.: Fusion rules in Wess-Zumino-Witten models. Nucl. Phys. B 340, 777–790 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  76. Zelevinsky, A.: Representations of finite classical groups: A Hopf algebra approach. Lecture Notes in Mathematics 869, Berlin-New York: Springer-Verlag, 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Korff.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korff, C. Cylindric Versions of Specialised Macdonald Functions and a Deformed Verlinde Algebra. Commun. Math. Phys. 318, 173–246 (2013). https://doi.org/10.1007/s00220-012-1630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1630-9

Keywords

Navigation