Skip to main content
Log in

Orbital Stability of Internal Waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper studies the nonlinear stability of capillary-gravity waves propagating along the interface dividing two immiscible fluid layers of finite depth. The motion in both regions is governed by the incompressible and irrotational Euler equations, with the density of each fluid being constant but distinct. A diverse collection of small-amplitude solitary wave solutions for this system have been constructed by several authors in the case of strong surface tension (as measured by the Bond number) and slightly subcritical Froude number. We prove that all of these waves are (conditionally) orbitally stable in the natural energy space. Moreover, the trivial solution is shown to be conditionally stable when the Bond and Froude numbers lie in a certain unbounded parameter region. For the near critical surface tension regime, we prove that one can infer conditional orbital stability or orbital instability of small-amplitude traveling waves solutions to the full Euler system from considerations of a dispersive PDE model equation. These results are obtained by reformulating the problem as an infinite-dimensional Hamiltonian system, then applying a version of the Grillakis–Shatah–Strauss method recently introduced in Varholm et al. (Commun Pure Appl Math 73:2634–2684, 2020). A key part of the analysis consists of computing the spectrum of the linearized augmented Hamiltonian at a shear flow or small-amplitude wave. For this, we generalize an idea used by Mielke (R Soc Lond Philos Trans Ser A Math Phys Eng Sci 360:2337–2358, 2002) to treat capillary-gravity water waves beneath vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albert, J.P.: Positivity properties and stability of solitary-wave solutions of model equations for long waves. Commun. Partial Differ. Equ. 17, 1–22 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Amick, C.J., Kirchgässner, K.: A theory of solitary water-waves in the presence of surface tension. Arch. Rational Mech. Anal. 105, 1–49 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Amick, C.J., Toland, J.F.: Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. Eur. J. Appl. Math. 3, 97–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amick, C.J., Turner, R.E.L.: A global theory of internal solitary waves in two-fluid systems. Trans. Am. Math. Soc. 298, 431–484 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amick, C.J., Turner, R.E.L.: Small internal waves in two-fluid systems. Arch. Ration. Mech. Anal. 108, 111–139 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angulo Pava, J.: Nonlinear dispersive equations, vol. 156 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2009. Existence and stability of solitary and periodic travelling wave solutions

  7. Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. (Lond.) Ser. A 328, 153–183 (1972)

    ADS  MathSciNet  Google Scholar 

  8. Benjamin, T.B., Bridges, T.J.: Reappraisal of the Kelvin-Helmholtz problem. I. Hamiltonian structure. J. Fluid Mech. 333, 301–325 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Benjamin, T.B., Olver, P.J.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Benney, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1976/77)

  11. Bona, J.L., Bose, D.K., Turner, R.E.L.: Finite-amplitude steady waves in stratified fluids. J. Math. Pures Appl. (9) 62(1983), 389–439 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Buffoni, B.: Periodic and homoclinic orbits for Lorentz–Lagrangian systems via variational methods. Nonlinear Anal. 26, 443–462 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buffoni, B.: Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173, 25–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buffoni, B.: Conditional energetic stability of gravity solitary waves in the presence of weak surface tension. Topol. Methods Nonlinear Anal. 25, 41–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buffoni, B.: Gravity solitary waves by minimization: an uncountable family. Topol. Methods Nonlinear Anal. 34, 339–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buffoni, B., Champneys, A.R., Toland, J.F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Differ. Equ. 8, 221–279 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buffoni, B., Groves, M.D., Toland, J.F.: A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Philos. Trans. R. Soc. Lond. Ser. A 354, 575–607 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  19. Champneys, A.R., Toland, J.F.: Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems. Nonlinearity 6, 665–721 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chen, R.M., Walsh, S., Wheeler, M.H. : Center manifolds without a phase space for quasilinear problems in elasticity, biology, and hydrodynamics. arXiv preprint arXiv:1907.04370 (2019)

  21. Chen, R.M., Walsh, S., Wheeler, M.H.: Global bifurcation for monotone fronts of elliptic equations. arXiv preprint arXiv:2005.00651 (2020)

  22. Craig, W., Groves, M.D.: Normal forms for wave motion in fluid interfaces. Wave Motion 31, 21–41 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Devaney, R.L.: Homoclinic orbits in Hamiltonian systems. J. Differ. Equ. 21, 431–438 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dey, B., Khare, A., Kumar, C.N.: Stationary solitons of the fifth order KdV-type. Equations and their stabilization. Phys. Lett. A 223, 449–452 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dias, F., Iooss, G.: Capillary-gravity solitary waves with damped oscillations. Phys. D 65, 399–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Drazin, P.G., Reid, W.H. : Hydrodynamic Stability, Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2004). With a foreword by John Miles

  27. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Groves, M.D., Wahlén, E.: On the existence and conditional energetic stability of solitary water waves with weak surface tension. C. R. Math. Acad. Sci. Paris 348, 397–402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Groves, M.D., Wahlén, E.: On the existence and conditional energetic stability of solitary gravity-capillary surface waves on deep water. J. Math. Fluid Mech. 13, 593–627 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Groves, M.D., Wahlén, E.: Existence and conditional energetic stability of solitary gravity-capillary water waves with constant vorticity. Proc. R. Soc. Edinb. Sect. A 145, 791–883 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Il’ichev, A.T., Semenov, A.Y.: Stability of solitary waves in dispersive media described by a fifth-order evolution equation. Theor. Comput. Fluid Dyn. 3, 307–326 (1992)

  32. Iooss, G., Kirchgässner, K.: Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris Sér. I Math. 311, 265–268 (1990)

  33. Iooss, G., Pérouème, M.-C.: Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Differ. Equ. 102, 62–88 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. James, G.: Internal travelling waves in the limit of a discontinuously stratified fluid. Arch. Ration. Mech. Anal. 160, 41–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kabakouala, A., Molinet, L.: On the stability of the solitary waves to the (generalized) Kawahara equation. J. Math. Anal. Appl. 457, 478–497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)

    Article  ADS  Google Scholar 

  37. Kirrmann, P.: Reduktion nichtlinearer elliptischer systeme in Zylindergebeiten unter Verwendung von optimaler Regularität in Hölder-Räumen. Ph.D. thesis, Universität Stuttgart (1991)

  38. Laget, O., Dias, F.: Numerical computation of capillary-gravity interfacial solitary waves. J. Fluid Mech. 349, 221–251 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lannes, D.: A stability criterion for two-fluid interfaces and applications. Arch. Ration. Mech. Anal. 208, 481–567 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lannes, D.: The Water Waves Problem, vol. 188. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  41. Le, H.: Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete Contin. Dyn. Syst. 38, 3357–3385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levandosky, S.P.: A stability analysis of fifth-order water wave models. Phys. D 125, 222–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Levandosky, S.P.: Stability of solitary waves of a fifth-order water wave model. Phys. D 227, 162–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Makarenko, N.I.: Smooth bore in a two-layer fluid, in Free boundary problems in continuum mechanics (Novosibirsk, 1991), vol. 106 of International Series of Numerical Mathematics, pp. 195–204. Birkhäuser, Basel (1992)

  45. Mielke, A.: Homoclinic and heteroclinic solutions in two-phase flow. In: Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994), vol. 7 of Advanced Series of Nonlinear Dynamics, pp. 353–362. World Scientific Publishing, River Edge (1995)

  46. Mielke, A.: On the energetic stability of solitary water waves. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360, 2337–2358 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Nilsson, D.V.: Internal gravity-capillary solitary waves in finite depth. Math. Methods Appl. Sci. 40, 1053–1080 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Posukhovskyi, I., Stefanov, A.G.: On the normalized ground states for the Kawahara equation and a fourth order NLS. Discrete Contin. Dyn. Syst. 40, 4131–4162 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  50. Sandstede, B.: Instability of localized buckling modes in a one-dimensional strut model. Philos. Trans. R. Soc. Lond. Ser. A 355, 2083–2097 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61, 848–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199, 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun, S.M., Shen, M.C.: A new solitary wave solution for water waves with surface tension. Ann. Mat. Pura Appl. (4) 162, 179–214 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Varholm, K., Wahlén, E., Walsh, S.: On the stability of solitary water waves with a point vortex. Commun. Pure Appl. Math. 73, 2634–2684 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of RMC is supported in part by the NSF through DMS-1907584. The research of SW is supported in part by the NSF through DMS-1812436. The authors would also like to thank Dag Nilsson for enlightening communications regarding the existence theory in Sect. 3.5, and Daniel Sinambela for close readings of earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Walsh.

Ethics declarations

Data availability statement

Data sharing not applicable to this article.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Elementary Identities

Appendix A. Elementary Identities

Here we give the proofs of the elementary first and second derivative formulas for the nonlocal operators \(G_\pm (\eta )\) and \(A(\eta )\).

Proof of Lemma 3.3

The formula (3.18) for \(D G_\pm (\eta )\) can be derived using the same method as the standard one-fluid case. To obtain (3.20), it is easier to first consider the derivative of

$$\begin{aligned} A(\eta )^{-1} = G_+(\eta )^{-1} B(\eta ) G_-(\eta )^{-1} = \rho _+ G_+(\eta )^{-1} + \rho _- G_-(\eta )^{-1}. \end{aligned}$$
(A.1)

Then,

$$\begin{aligned} \left\langle D A(\eta ) {{\dot{\eta }}}, \, \psi \right\rangle&= -A(\eta ) \left\langle D (A(\eta )^{-1}) {{\dot{\eta }}}, A(\eta ) \psi \right\rangle \\&= \sum _\pm \rho _\pm A(\eta ) G_\pm (\eta )^{-1} \left\langle D G_\pm (\eta ) {{\dot{\eta }}}, G_\pm (\eta )^{-1} A(\eta ) \psi \right\rangle . \end{aligned}$$

Using the self-adjointness of \(G_\pm (\eta )\) and the formula (3.18) for \(D G_\pm (\eta )\), this leads immediately to (3.20). \(\square \)

Proof of Lemma 3.6

As in the proof of Lemma 3.3, we start by considering the corresponding formula for \(A(\eta )^{-1}\). Recalling (A.1), we see that

$$\begin{aligned} \begin{aligned} D^2 (A(\eta )^{-1})[ {{\dot{\eta }}}, {{\dot{\eta }}}]&= \sum _{\pm } \rho _\pm D ^2 (G_\pm (\eta )^{-1})[ {{\dot{\eta }}}, {{\dot{\eta }}}] \\&= -\sum _{\pm } \rho _\pm G_\pm (\eta )^{-1} \left( D ^2G_\pm (\eta )[{{\dot{\eta }}},{{\dot{\eta }}}] \right. \\&\left. - 2 D G_\pm (\eta )[{{\dot{\eta }}}] G_\pm (\eta )^{-1} D G_\pm (\eta )[{{\dot{\eta }}}]\right) G_\pm (\eta )^{-1}. \end{aligned} \end{aligned}$$

On the other hand, we have the elementary identity

$$\begin{aligned} \begin{aligned} D ^2 A(\eta )[ {{\dot{\eta }}},{{\dot{\eta }}}]&= -A(\eta ) D ^2(A(\eta )^{-1})[{{\dot{\eta }}},{{\dot{\eta }}}] A(\eta ) + 2D A(\eta )[{{\dot{\eta }}}] A(\eta )^{-1} D A(\eta )[{{\dot{\eta }}}]. \end{aligned} \end{aligned}$$
(A.2)

Together, these will furnish a representation formula for the second variation of \(A(\eta )^{-1}\) once we have fully expanded these expressions using (3.18) and (3.21).

Consider each of the terms on the right-hand side of (A.2). For the first, we have

$$\begin{aligned}&-\int _{\mathbb {R}} \psi A(\eta ) D ^2 (A(\eta )^{-1})[{{\dot{\eta }}},{{\dot{\eta }}}] A(\eta ) \psi \,d x= \sum _{\pm } \rho _\pm \int _{\mathbb {R}} \theta _\pm D ^2 G_\pm (\eta )[{{\dot{\eta }}},{{\dot{\eta }}}] \theta _\pm \,d x\\&\qquad -2 \sum _{\pm } \rho _\pm \int _{\mathbb {R}} \theta _\pm D G_\pm (\eta )[{{\dot{\eta }}}] G_\pm (\eta )^{-1} D G_\pm (\eta )[{{\dot{\eta }}}] \theta _\pm \,d x, \end{aligned}$$

where recall that \(\theta _\pm = \theta _\pm (\eta , \psi )\) is given by (3.24). Throughout the remainder of the proof, \(a_i^\pm \) will always be evaluated at \((\eta , \theta _\pm )\), so we suppress the arguments for readability. By the first variation (3.18) and second variation (3.21) formulas for \(G_\pm (\eta )\), this becomes

$$\begin{aligned}&-\int _{\mathbb {R}} \psi A(\eta ) D ^2 (A(\eta )^{-1})[{{\dot{\eta }}}, {{\dot{\eta }}}] A(\eta ) \psi \,d x= \sum _\pm \rho _\pm \int _{\mathbb {R}} \left( a_4^\pm {{\dot{\eta }}}^2 + 2a_2^\pm {{\dot{\eta }}} G_\pm (\eta ) \left( a_2^\pm {{\dot{\eta }}} \right) \right) \,d x\\&\qquad -2 \sum _{\pm } \rho _\pm \int _{\mathbb {R}} a_1^\pm \left( G_\pm (\eta )^{-1} D G_\pm (\eta )[{{\dot{\eta }}}]\theta _\pm \right) ^\prime {{\dot{\eta }}} \,d x\\&\qquad -2 \sum _\pm \rho _\pm \int _{\mathbb {R}} a_2^\pm \left( D G_\pm (\eta )[{{\dot{\eta }}}] \theta _\pm \right) {{\dot{\eta }}} \,d x\\&\quad = \sum _\pm \rho _\pm \int _{\mathbb {R}} \left( a_4^\pm {{\dot{\eta }}}^2 + 2a_2^\pm {{\dot{\eta }}} G_\pm (\eta ) \left( a_2^\pm {{\dot{\eta }}} \right) \right) \,d x\\&\qquad -2 \sum _\pm \rho _\pm \int _{\mathbb {R}} {\mathscr {L}}_\pm [{{\dot{\eta }}}] D G_\pm (\eta )[{{\dot{\eta }}}] \theta _\pm \,d x, \end{aligned}$$

for the linear operator \({\mathscr {L}}_\pm \) given by (3.25). Using (3.18) once more allows us to simplify this to

$$\begin{aligned}&-\int _{\mathbb {R}} \psi A(\eta ) D ^2 (A(\eta )^{-1})[{{\dot{\eta }}}, {{\dot{\eta }}}] A(\eta ) \psi \,d x= \sum _\pm \rho _\pm \int _{\mathbb {R}} \left( a_4^\pm {{\dot{\eta }}} + 2a_2^\pm G_\pm (\eta ) \left( a_2^\pm {{\dot{\eta }}} \right) \right) {{\dot{\eta }}} \,d x\\&\qquad -2 \sum _{\pm } \rho _\pm \int _{\mathbb {R}} \left( a_1^\pm {\mathscr {L}}_\pm [{{\dot{\eta }}}]^\prime + a_2^\pm G_\pm (\eta ) {\mathscr {L}}_\pm [{{\dot{\eta }}}] \right) {{\dot{\eta }}} \,d x. \end{aligned}$$

So finally we have

$$\begin{aligned}&-\int _{\mathbb {R}} \psi A(\eta ) D ^2 (A(\eta )^{-1})[{{\dot{\eta }}},{{\dot{\eta }}}] A(\eta ) \psi \,d x\nonumber \\&\quad = \int _{\mathbb {R}} \Big ( a_4 {{\dot{\eta }}} + 2\sum _\pm \rho _\pm a_2^\pm G_\pm (\eta ) \left( a_2^\pm {{\dot{\eta }}} \right) - 2 {\mathscr {M}}{{\dot{\eta }}} \Big ) {{\dot{\eta }}} \,d x\end{aligned}$$
(A.3)

where recall \(a_4 = a_4(\eta ,\psi )\) and \({\mathscr {M}} = {\mathscr {M}}(\eta ,\psi )\) were defined in (3.24) and (3.26), respectively.

Likewise, the second in term on the right-hand side of (A.2) can be treated as follows. Using (3.20), we calculate that

$$\begin{aligned}&\int _{\mathbb {R}} \psi D A(\eta )[ {{\dot{\eta }}}] A(\eta )^{-1} D A(\eta )[{{\dot{\eta }}}] \psi \,d x= \sum _{\pm } \rho _\pm \int _{\mathbb {R}} \Big ( a_1^\pm \left( G_\pm (\eta )^{-1} D A(\eta )[{{\dot{\eta }}}]\psi \right) ^\prime \\&\qquad +a_2^\pm A(\eta ) D A(\eta )[{{\dot{\eta }}}] \psi \Big ) {{\dot{\eta }}} \,d x\\&\quad = \sum _\pm \rho _\pm \int _{\mathbb {R}} {\mathscr {L}}_\pm [{{\dot{\eta }}}] D A(\eta )[{{\dot{\eta }}}] \psi \,d x= \int _{\mathbb {R}} {\mathscr {L}}[{{\dot{\eta }}}] D A(\eta )[{{\dot{\eta }}}] \psi \,d x. \end{aligned}$$

Applying (3.20) once more then yields

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}} \psi D A(\eta )[ {{\dot{\eta }}}] A(\eta )^{-1} D A(\eta )[{{\dot{\eta }}}] \psi \,d x= \sum _{\pm } \rho _{\pm } \int _{\mathbb {R}} \Big ( a_1^{\pm } \left( A(\eta ) G_{\pm }(\eta )^{-1} {\mathscr {L}}[{{\dot{\eta }}}] \right) ^\prime \\&\qquad +a_2^{\pm } A(\eta ) {\mathscr {L}}[{{\dot{\eta }}}] \Big ) {{\dot{\eta }}} \,d x\\&\quad = \int _{\mathbb {R}} {{\dot{\eta }}}{\mathscr {N}} {{\dot{\eta }}} \,d x, \end{aligned} \end{aligned}$$
(A.4)

with \({\mathscr {N}} = {\mathscr {N}}(\eta ,\psi )\) defined in (3.27). Combining this with (A.2) and (A.3) gives the formula (3.23), completing the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Walsh, S. Orbital Stability of Internal Waves. Commun. Math. Phys. 391, 1091–1141 (2022). https://doi.org/10.1007/s00220-022-04332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04332-x

Navigation