Skip to main content
Log in

Fluctuations in Local Quantum Unique Ergodicity for Generalized Wigner Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the eigenvector mass distribution for generalized Wigner matrices on a set of coordinates I, where \(N^\varepsilon \leqslant | I | \leqslant N^{1- \varepsilon }\), and prove it converges to a Gaussian at every energy level, including the edge, as \(N\rightarrow \infty \). The key technical input is a four-point decorrelation estimate for eigenvectors of matrices with a large Gaussian component. Its proof is an application of the maximum principle to a new set of moment observables satisfying parabolic evolution equations. Additionally, we prove high-probability Quantum Unique Ergodicity and Quantum Weak Mixing bounds for all eigenvectors and all deterministic sets of entries using a novel bootstrap argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This expression is analogous to an observable used in [20]; see [20], (1.17).

  2. More precisely, we demand that these equations hold with \(\Theta ^{(a,b)}_w G\) replacing \(G^s\), \(\lambda _k( \Theta ^{(a,b)}_w M)\) replacing \(\lambda _k\), the eigenvectors \(\Theta ^{(a,b)}_w {\mathbf {u}}_k\) of \(\Theta ^{(a,b)}_w M\) replacing \({\mathbf {u}}^s_k\), and \(\sup _{a,b \in [\![1,N]\!]}\, \sup _{w \in [0,1]}\) replacing \(\sup _{s \in [ 0,1]}\).

  3. The constants in the probability bound given by Lemma 5.6 do not depend on the choice of \(\gamma \), since the \(H^\gamma \) satisfy Definition 1.1 simultaneously for a single choice of constants. Therefore, the constant in (6.20) is uniform in \(\gamma \).

References

  1. Aggarwal, A.: Bulk universality for generalized Wigner matrices with few moments. Probab. Theory Relat. Fields 173(1–2), 375–432 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Lopatto, P., Marcinek, J.: Eigenvector statistics of Lévy matrices. Ann. Probab. 49(4), 1778–1846 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aggarwal, A., Lopatto, P., Yau, H.-T.: Goe statistics for Lévy matrices. J. Eur. Math. Soc. (2021)

  4. Anantharaman, N.: Entropy and the localization of eigenfunctions. Ann. Math. 2(168), 435–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anantharaman, N., Le Masson, E.: Quantum ergodicity on large regular graphs. Duke Math. J. 164(4), 723–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anantharaman, N., Sabri, M.: Quantum ergodicity on graphs: from spectral to spatial delocalization. Ann. Math. (2) 189(3), 753–835 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauerschmidt, R., Knowles, A., Yau, H.-T.: Local semicircle law for random regular graphs. Commun. Pure Appl. Math. 70(10), 1898–1960 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benigni, L.: Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices. Ann. Inst. H. Poincaré Probab. Stat. 56(4), 2822–2867 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benigni, L.: Fermionic eigenvector moment flow. Probab. Theory Relat. Fields 179(3–4), 733–775 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benigni, L., Lopatto, P.: Optimal delocalization for generalized Wigner matrices (2020)

  11. Bloemendal, A., Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19, 53 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Bourgade, P.: Random band matrices. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pp. 2759–2784. World Sci. Publ., Hackensack, NJ (2018)

  13. Bourgade, P.: Extreme gaps between eigenvalues of Wigner matrices. J. Eur. Math. Soc. (2021)

  14. Bourgade, P., Huang, J., Yau, H.-T.: Eigenvector statistics of sparse random matrices. Electron. J. Probab. 22, 1–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgade, P., Yau, H.-T.: The eigenvector moment flow and local quantum unique ergodicity. Commun. Math. Phys. 350(1), 231–278 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bourgade, P., Yau, H.-T., Yin, J.: Random band matrices in the delocalized phase I: quantum unique ergodicity and universality. Commun. Pure Appl. Math. 73(7), 1526–1596 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brooks, S., Lindenstrauss, E.: Non-localization of eigenfunctions on large regular graphs. Israel J. Math. 193(1), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brooks, S., Lindenstrauss, E.: Joint quasimodes, positive entropy, and quantum unique ergodicity. Invent. Math. 198(1), 219–259 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cipolloni, G., Erdős, L., Schröder, D.: Eigenstate thermalization hypothesis for Wigner matrices (2020)

  20. Cipolloni, G., Erdős, L., Schröder, D.: Normal fluctuation in quantum ergodicity for Wigner matrices (2021)

  21. Colin De Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102(3), 497–502 (1985)

    Article  ADS  MATH  Google Scholar 

  22. Deutsch, J.: Eigenstate thermalization hypothesis. Rep. Prog. Phys. 81(8), 082001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Eckhardt, B., Fishman, S., Keating, J., Agam, O., Main, J., Müller, K.: Approach to ergodicity in quantum wave functions. Phys. Rev. E 52(6), 5893 (1995)

    Article  ADS  Google Scholar 

  24. Erdős, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287(2), 641–655 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Erdős, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 3, 436–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Erdős, L., Schlein, B., Yau, H.-T.: Universality of random matrices and local relaxation flow. Invent. Math. 185(1), 75–119 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Erdős, L., Yau, H.-T.: A dynamical approach to random matrix theory. Courant Lecture Notes in Mathematics, p. 28 (2017)

  29. Erdős, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154(1–2), 341–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Götze, F., Naumov, A., Tikhomirov, A.: Local semicircle law under fourth moment condition. J. Theor. Probab. 33(3), 1327–1362 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Götze, F., Naumov, A., Tikhomirov, A., Timushev, D.: On the local semicircular law for Wigner ensembles. Bernoulli 24(3), 2358–2400 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Holowinsky, R.: Sieving for mass equidistribution. Ann. Math. 2, 1499–1516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. 2, 1517–1528 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. Probab. Theory Relat. Fields 155(3–4), 543–582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Knowles, A., Yin, J.: The isotropic semicircle law and deformation of Wigner matrices. Commun. Pure Appl. Math. 66(11), 1663–1750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 2, 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, W., Sarnak, P.: Quantum ergodicity of eigenfunctions on \({\rm PSL}_2(\mathbb{Z})/\mathbb{H}^2\). Publ. Math. Inst. Hautes Etudes Sci. 81(1), 207–237 (1995)

    Article  Google Scholar 

  39. Marcinek, J., Yau, H.-T.: High dimensional normality of noisy eigenvectors (2020)

  40. Marklof, J., Rudnick, Z.: Quantum unique ergodicity for parabolic maps. Geom. Funct. Anal. 10(6), 1554–1578 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Rourke, S., Vu, V., Wang, K.: Eigenvectors of random matrices: a survey. J. Combin. Theory Ser. A 144, 361–442 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rudelson, M., Vershynin, R.: Delocalization of eigenvectors of random matrices with independent entries. Duke Math. J. 164(13), 2507–2538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Schubert, R.: Upper bounds on the rate of quantum ergodicity. Ann. Henri Poincaré 7(6), 1085–1098 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Schubert, R.: On the rate of quantum ergodicity for quantised maps. Ann. Henri Poincaré 9(8), 1455–1477 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Shnirelman, A.: Ergodic properties of eigenfunctions. Russ. Math. Surv. 29(6), 181–182 (1974)

    MathSciNet  Google Scholar 

  47. Srednicki, M.: Chaos and quantum thermalization. Phys. Rev. E 50(2), 888 (1994)

    Article  ADS  Google Scholar 

  48. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549–572 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tao, T., Vu, V.: Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl. 1(01), 1150001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vu, V., Wang, K.: Random weighted projections, random quadratic forms and random eigenvectors. Random Struct. Algorithms 47(4), 792–821 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank P. Bourgade for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lopatto.

Additional information

Communicated by H-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P.L. is supported by National Science Foundation Grant DMS-1926686.

Appendices

Resolvent Estimates

The following lemma was proved in [10].

Lemma A.1

[10, Lemma 4.8]. Fix \(\omega , \delta _1, \varepsilon _1, \delta _2, \varepsilon _2>0\) such that \(\delta _1 > \varepsilon _1\) and \(\ell \in [\![1,N]\!]\). Let H be a generalized Wigner matrix, and let \({\mathcal {B}}= {\mathcal {B}}(\omega ,\delta _1,\varepsilon _1,\delta _2, \varepsilon _2)\) be the set from Definition 5.5. Let \(\eta _\ell =\frac{N^{-\varepsilon _2}}{N^{2/3} {\widehat{\ell }}^{1/3}}\). Then there exists a constant \(C= C(\varepsilon _2)>0\) such that for all \(E \in I_{\delta _2}(\lambda _\ell ) \cup I_{\delta _2}({\widetilde{\lambda }}_\ell )\),

$$\begin{aligned} \sup _{a,b,c,d \in [\![1,N]\!]} \sup _{w \in [0,1]} {\mathbb {1}}_{{\mathcal {B}}}{{\,\mathrm{Im}\,}}\Theta ^{(a,b)}_w G_{cd}(E+\mathrm {i}\eta _\ell ) \leqslant C N^{4\varepsilon _2} \left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3} \end{aligned}$$
(A.1)

and

$$\begin{aligned} \sup _{a,b,c,d \in [\![1,N]\!]} \sup _{w \in [0,1]} {\mathbb {1}}_{{\mathcal {B}}}{{\,\mathrm{Re}\,}}\Theta ^{(a,b)}_w G_{cd}(E+\mathrm {i}\eta _\ell ) \leqslant C N^{4\varepsilon _2}. \end{aligned}$$
(A.2)

Here \({\widetilde{E}} = {\widetilde{E}} (1, \omega )\).

In what follows we write H for \(\Theta ^{(a,b)}_w H\), and similarly for G and \(m_N\), omitting the rank one perturbation from the notation.

Proof of Lemma 5.17

We first observe by the spectral theorem that

$$\begin{aligned} | I _N | N^{-2} {{\,\mathrm{Tr}\,}}{{\,\mathrm{Im}\,}}G (z_1) {{\,\mathrm{Im}\,}}G (z_2) = \frac{1}{N^2} \sum _{j=1}^N \frac{ | I _N | \eta _k\eta _\ell }{ \left( ( \lambda _j - E_1)^2 + \eta ^2_k\right) \left( ( \lambda _j - E_2)^2 + \eta ^2_\ell \right) } ,\nonumber \\ \end{aligned}$$
(A.3)

and

$$\begin{aligned} \frac{2}{N} \sum _{\alpha \in I_N} \langle {\mathbf {q}}_\alpha ,{{\,\mathrm{Im}\,}}G(z_1){{\,\mathrm{Im}\,}}G(z_2){\mathbf {q}}_\alpha \rangle = \frac{2}{N} \sum _{j=1}^N \frac{ \eta _k\eta _\ell \left( p_{jj}+\frac{\vert I\vert }{N}\right) }{ \left( ( \lambda _j - E_1)^2 + \eta ^2_k\right) \left( ( \lambda _j - E_2)^2 + \eta ^2_\ell \right) }.\nonumber \\ \end{aligned}$$
(A.4)

For (5.70), we compute

$$\begin{aligned} \frac{1 }{ | I_N|}\sum _{ \alpha , \beta \in I_N}&{{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {q}}_\beta \rangle \end{aligned}$$
(A.5)
$$\begin{aligned}&= \frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} \left( \sum _{j=1}^N \frac{ \eta _k \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_j\rangle \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_j\rangle }{ ( \lambda _j - E_1)^2 + \eta ^2_k }\right) \left( \sum _{m=1}^N \frac{\eta _\ell \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_m\rangle \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_m\rangle }{( \lambda _m - E_2)^2 + \eta ^2_\ell }\right) \end{aligned}$$
(A.6)
$$\begin{aligned}&= \frac{1}{N^2} \sum _{j\ne m}^N \frac{ \eta _k\eta _\ell {\widehat{p}}^2_{jm}(I_N) }{ \left( ( \lambda _j - E_1)^2 + \eta ^2_k\right) \left( ( \lambda _m - E_2)^2 + \eta ^2_\ell \right) } \end{aligned}$$
(A.7)
$$\begin{aligned}&\quad +\,\frac{1}{|I_N|} \sum _{j=1}^N \frac{ \eta _k\eta _\ell \left( p_{jj} + \frac{ | I_N | }{N} \right) ^2 }{ \left( ( \lambda _j - E_1)^2 + \eta ^2_k\right) \left( \lambda _j - E_2)^2 + \eta ^2_\ell \right) }. \end{aligned}$$
(A.8)

The second term is canceled by (A.3) and (A.4), except for the \(p_{jj}^2\) term, and

$$\begin{aligned} \frac{1}{N^2} \sum _{j,m=1}^N \frac{ \eta _k\eta _\ell {\widehat{p}}^2_{jm}(I_N) }{ \left( ( \lambda _j - E_1)^2 + \eta ^2_k\right) \left( ( \lambda _m - E_2)^2 + \eta ^2_\ell \right) }&\leqslant N^{2{\mathfrak {s}} + 2{\mathfrak {a}}} \left( {{\,\mathrm{Im}\,}}m_N(E_1 + \mathrm {i}\eta _k) \right) \left( {{\,\mathrm{Im}\,}}m_N(E_2 + \mathrm {i}\eta _\ell ) \right) \end{aligned}$$
(A.9)
$$\begin{aligned}&\leqslant N^{2{\mathfrak {s}} + 2{\mathfrak {a}} + 8 \varepsilon _2 }\left( \frac{{\widehat{k}}}{N}\right) ^{1/3}\left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3}. \end{aligned}$$
(A.10)

In (A.9), we used the definition of the boostrap set \({\mathcal {E}}\). In the last line, we averaged (A.1) over all indices to bound the imaginary part of \(m_N\). This proves the first claim.

The first derivative of (A.5) is, where \(({\mathbf {e}}_\alpha )_{\alpha \in [\![1,N]\!]}\) is the standard basis,

$$\begin{aligned} \partial _{ab}&\left( \frac{1 }{ | I_N|}\sum _{ \alpha , \beta \in I_N}{{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {q}}_\beta \rangle \right) \end{aligned}$$
(A.11)
$$\begin{aligned}&\quad = -\frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {q}}_\beta \rangle \end{aligned}$$
(A.12)
$$\begin{aligned}&\qquad -\, \frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {e}}_b\rangle \langle {\mathbf {e}}_a,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {q}}_\beta \rangle \end{aligned}$$
(A.13)
$$\begin{aligned}&\qquad -\, \frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} \langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z_2){\mathbf {q}}_\beta \rangle \end{aligned}$$
(A.14)
$$\begin{aligned}&\qquad -\, \frac{1}{|I_N|}\sum _{\alpha , \beta \in I_N} \langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {e}}_b\rangle \langle {\mathbf {e}}_a,G(z_2){\mathbf {q}}_\beta \rangle . \end{aligned}$$
(A.15)

We compute a representative term:

$$\begin{aligned} \frac{1}{|I_N|}&\sum _{\alpha , \beta \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_1){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z_1){\mathbf {q}}_\beta \rangle {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z_2){\mathbf {q}}_\beta \rangle \end{aligned}$$
(A.16)
$$\begin{aligned}&= \frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} {{\,\mathrm{Im}\,}}\left[ \left( \sum _{i=1}^N \frac{\langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_i\rangle {\mathbf {u}}_i(a) }{\lambda _i - z_1 } \right) \left( \sum _{j=1}^N \frac{{\mathbf {u}}_j(b) \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_j\rangle }{\lambda _j - z_1 } \right) \right] \nonumber \\&\quad {{\,\mathrm{Im}\,}}\left( \sum _{m=1}^N \frac{\langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_m\rangle \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_m\rangle }{\lambda _m - z_2 }\right) \end{aligned}$$
(A.17)
$$\begin{aligned}&=\frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N}\sum _{i,j=1}^N \sum _{m=1}^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_j(b) }{(\lambda _i - z_1 )(\lambda _j - z_1 )} \right] \nonumber \\&\quad {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _m - z_2 }\right) \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_i\rangle \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_m\rangle \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_m\rangle \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_j\rangle . \end{aligned}$$
(A.18)

When \(i \ne m\) and \(j \ne m\), this can be bounded similarly to the previous computation by applying the bootstrap hypothesis and eigenvector delocalization. We also observe the bound

$$\begin{aligned} \sum _{i,j} \left| {{\,\mathrm{Im}\,}}\frac{ 1 }{(\lambda _i - z_1 )(\lambda _j - z_1 )} \right|&= \sum _{i,j} \left| {{\,\mathrm{Im}\,}}\frac{ 1 }{(\lambda _i - z_1 )} {{\,\mathrm{Re}\,}}\frac{1}{(\lambda _j - z_1 )} + {{\,\mathrm{Re}\,}}\frac{ 1 }{(\lambda _i - z_1 )} {{\,\mathrm{Im}\,}}\frac{1}{(\lambda _j - z_1 )} \right| \end{aligned}$$
(A.19)
$$\begin{aligned}&\leqslant 2 \sum _{i,j} {{\,\mathrm{Im}\,}}\frac{ 1 }{(\lambda _i - z_1 )} \frac{1}{| \lambda _j - z_1 |} \end{aligned}$$
(A.20)
$$\begin{aligned}&\leqslant 2 N {{\,\mathrm{Im}\,}}m_N(z_1) \left( \sum _{i} 1 + \frac{1}{| \lambda _i - z_1|^2 }\right) \end{aligned}$$
(A.21)
$$\begin{aligned}&\leqslant 2 N {{\,\mathrm{Im}\,}}m_N(z_1) \left( N \big ( 1 + {{\,\mathrm{Im}\,}}m_N(z_1) \big ) \right) , \end{aligned}$$
(A.22)

and we can again use (A.1) to bound the imaginary part of \(m_N\).

We now consider the other cases. When \(i=j=m\) we get

$$\begin{aligned}&\frac{1}{|I_N|} \sum _{\alpha , \beta \in I_N} \sum _{i=1}^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_i(b) }{(\lambda _i- z_1 )(\lambda _i - z_1 )} \right] {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _i - z_2 }\right) \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_i\rangle ^2 \langle {\mathbf {q}}_\beta ,{\mathbf {u}}_i\rangle ^2 \end{aligned}$$
(A.23)
$$\begin{aligned}&\quad = \frac{1}{|I_N|} \sum _{i=1}^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_i(b) }{(\lambda _i- z_1 )(\lambda _i - z_1 )} \right] {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _i - z_2 }\right) \left( p_{ii}(I_N) + \frac{ | I_N |}{N} \right) ^2. \end{aligned}$$
(A.24)

The \(p_{ii}(I_N)^2\) term is negligible, and the \(\left( \frac{ | I_N |}{N} \right) ^2\) term in the expansion is canceled by the derivative of (A.3). (Note that the cross-term \(2 p_{ii}(I_N) | I_N | N^{-1}\) contributes to the \(\left( \frac{ | I_N |}{N} \right) ^2\) term by the definition of \(p_{ii}\).) We are left with

$$\begin{aligned} \frac{2}{N} \sum _{i=1}^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_i(b) }{(\lambda _i- z_1 )(\lambda _i - z_1 )} \right] {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _i - z_2 }\right) \left( p_{ii} + \frac{ | I_N |}{N} \right) . \end{aligned}$$
(A.25)

With \(i=m, j \ne m\) or \(j =m, i \ne m\), we get cross-terms

$$\begin{aligned}&\frac{1}{N} \sum _{i\ne j }^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_j(b) }{(\lambda _i - z_k )(\lambda _j - z_k )} \right] {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _i - z_\ell }\right) p_{ij},\nonumber \\&\quad \frac{1}{N} \sum _{i\ne j }^N {{\,\mathrm{Im}\,}}\left[ \frac{ {\mathbf {u}}_i(a) {\mathbf {u}}_j(b) }{(\lambda _i - z_k )(\lambda _j - z_k )} \right] {{\,\mathrm{Im}\,}}\left( \frac{1 }{\lambda _j - z_\ell }\right) p_{ij}. \end{aligned}$$
(A.26)

Together with the previous sum, these are canceled by the derivative of (A.4). The other three terms in (A.15) are similar.

The higher derivatives in (5.70) are controlled in the same way. One thing important to note is that differentiating only adds resolvent terms and, in particular, does not add any sums over eigenvector entries. Thus, there can only be a quadratic term for \(p_{k\ell }\) which is bounded by \(N^{2{\mathfrak {a}}+2{\mathfrak {s}}}\) regardless of the order of the derivatives. We omit the straightforward but tedious computations.

The remaining two almost sure bounds are trivial consequences of the inequality \(\left| G_{ij}(z) \right| \leqslant ({{\,\mathrm{Im}\,}}z)^{-1}\). \(\quad \square \)

Proof of Lemma 7.3

We denote \(z=E+\mathrm {i}\eta _\ell \) and we use the spectral theorem to see that

$$\begin{aligned}&\frac{1}{ \sqrt{| I_N|}} \left| \sum _{ \alpha \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z){\mathbf {q}}_\alpha \rangle - {{\,\mathrm{Im}\,}}m_N(z) \right| = \frac{1}{ \sqrt{| I_N|}} \left| \sum _{k=1} \sum _{ \alpha \in I_N}\frac{ \eta _\ell \left( \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle ^2 - N^{-1} \right) }{ ( E - \lambda _k)^2 + \eta ^2_\ell } \right| \end{aligned}$$
(A.27)
$$\begin{aligned}&\leqslant \frac{1}{N} \sum _{k=1} \frac{ \eta _\ell \left| {\widehat{p}}_{kk}(I_N)\right| }{ ( E - \lambda _k)^2 + \eta ^2_\ell } \end{aligned}$$
(A.28)
$$\begin{aligned}&\leqslant N^{-1 + \sigma + \omega } \sum _{k=1} \frac{ \eta _\ell }{ ( E - \lambda _k)^2 + \eta ^2_\ell } \end{aligned}$$
(A.29)
$$\begin{aligned}&= CN^{ \sigma + \omega } {{\,\mathrm{Im}\,}}m_N(z) \end{aligned}$$
(A.30)
$$\begin{aligned}&\leqslant CN^{\sigma + \omega + 4 \varepsilon _2} \left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3}. \end{aligned}$$
(A.31)

In the last line we used (A.1). Here \(C = C(\varepsilon _2) >0\) is a constant depending on \(\varepsilon _2\).

For the first derivative, we have

$$\begin{aligned}&\partial _{ab} \left( \frac{1}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z){\mathbf {q}}_\alpha \rangle - {{\,\mathrm{Im}\,}}m_N(z)\right) \nonumber \\&\quad = \frac{1}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} \left( {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - {{\,\mathrm{Im}\,}}\frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z) \right) .\nonumber \\ \end{aligned}$$
(A.32)

Using the spectral theorem, we compute

$$\begin{aligned} \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle&= \left( \sum _{k=1}^N \frac{\langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle {\mathbf {u}}_k(a) }{\lambda _k - z }\right) \left( \sum _{j=1}^N \frac{ {\mathbf {u}}_j(b) \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_j\rangle }{\lambda _j - z }\right) \end{aligned}$$
(A.33)
$$\begin{aligned}&= \sum _{k=1}^N \frac{\langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle ^2 {\mathbf {u}}_k(a) {\mathbf {u}}_k(b) }{(\lambda _k - z )^2} + \sum _{k \ne j} \frac{ \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_j\rangle {\mathbf {u}}_k(a) {\mathbf {u}}_j(b)}{(\lambda _k - z )(\lambda _j - z)}. \end{aligned}$$
(A.34)

We also have

$$\begin{aligned} \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z)&= \frac{1}{N} \sum _{i=1}^N \left( \sum _{k=1}^N \frac{{\mathbf {u}}_k(i) {\mathbf {u}}_k(a) }{\lambda _k - z }\right) \left( \sum _{j=1}^N \frac{ {\mathbf {u}}_j(b) {\mathbf {u}}_j(i) }{\lambda _j - z }\right) \end{aligned}$$
(A.35)
$$\begin{aligned}&= \frac{1}{N} \sum _{k=1}^N \frac{{\mathbf {u}}_k(a) {\mathbf {u}}_k(b) }{(\lambda _k - z )^2}. \end{aligned}$$
(A.36)

We used that the terms in the product with \(k\ne j\) vanish due to the sum over i and the orthogonality of \({\mathbf {u}}_k\) and \({\mathbf {u}}_j\).

Subtracting (A.36) from the first term of (A.34), we have

$$\begin{aligned}&{{\,\mathrm{Im}\,}}\frac{1}{\sqrt{|I_N | } }\sum _{k=1}^N \sum _{\alpha \in I_N} \frac{ ( \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle ^2 - N^{-1}) {\mathbf {u}}_k(a) {\mathbf {u}}_k(b) }{(\lambda _k - z )^2} = \frac{1}{N} {{\,\mathrm{Im}\,}}\sum _{k=1}^N \frac{ {\widehat{p}}_{kk}(I_N) {\mathbf {u}}_k(a) {\mathbf {u}}_k(b) }{(\lambda _k - z )^2} \end{aligned}$$
(A.37)
$$\begin{aligned}&\leqslant N^{ - 2 + \sigma + 3 \omega } \sum _{k=1}^N \frac{ 1 }{|\lambda _k - z |^2} \end{aligned}$$
(A.38)
$$\begin{aligned}&\leqslant N^{ - 2 + \sigma + 3 \omega } \frac{1}{\eta _\ell } {{\,\mathrm{Im}\,}}\sum _{k=1}^N \frac{ 1 }{\lambda _k - z } \end{aligned}$$
(A.39)
$$\begin{aligned}&\leqslant N^{ \sigma + 3 \omega + 5 \varepsilon _2 } \left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3}. \end{aligned}$$
(A.40)

In the last inequality, we used (A.1). It remains to control the second term in (A.34). Using (A.19), this is

$$\begin{aligned}&{{\,\mathrm{Im}\,}}\sum _{k \ne j} \frac{1}{\sqrt{|I_N | } } \sum _{\alpha \in I_N} \frac{ \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_k\rangle \langle {\mathbf {q}}_\alpha ,{\mathbf {u}}_j\rangle {\mathbf {u}}_k(a) {\mathbf {u}}_j(b)}{(\lambda _k - z )(\lambda _j - z)} =\frac{1}{N} {{\,\mathrm{Im}\,}}\sum _{k \ne j} \frac{ {\widehat{p}}_{kj} {\mathbf {u}}_k(a) {\mathbf {u}}_j(b)}{(\lambda _k - z )(\lambda _j - z)} \end{aligned}$$
(A.41)
$$\begin{aligned}&\leqslant N^{-2 + \sigma +3 \omega } \sum _{k \ne j} {{\,\mathrm{Im}\,}}\frac{1}{(\lambda _k - z )(\lambda _j - z)} \end{aligned}$$
(A.42)
$$\begin{aligned}&\leqslant N^{ \sigma +3 \omega + 8 \varepsilon _2} \left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3}. \end{aligned}$$
(A.43)

For the second derivative, we compute

$$\begin{aligned} \partial ^2_{ab}&\left( \frac{1}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z){\mathbf {q}}_\alpha \rangle - {{\,\mathrm{Im}\,}}m_N(z)\right) \end{aligned}$$
(A.44)

by noting that

$$\begin{aligned}&\partial ^2_{ab} \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {q}}_\alpha \rangle = 2 \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle G_{b a}(z) \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle \end{aligned}$$
(A.45)
$$\begin{aligned}&\quad +\, \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_b\rangle G_{a a}(z) \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle \end{aligned}$$
(A.46)
$$\begin{aligned}&\quad +\, \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle G_{b a}(z) \langle {\mathbf {e}}_a,G(z){\mathbf {q}}_\alpha \rangle . \end{aligned}$$
(A.47)

One representative term is

$$\begin{aligned}&\frac{2}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} \left( {{\,\mathrm{Im}\,}}\langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle G_{b a}(z) \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - {{\,\mathrm{Im}\,}}\frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{ba}(z) G_{bi}(z) \right) \end{aligned}$$
(A.48)
$$\begin{aligned}&= \frac{2}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} \left( {{\,\mathrm{Im}\,}}\left[ G_{b a}(z) \left( \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z) \right) \right] \right) \end{aligned}$$
(A.49)
$$\begin{aligned}&= \frac{2}{ \sqrt{| I_N|}}{{\,\mathrm{Im}\,}}G_{b a}(z) \sum _{ \alpha \in I_N} {{\,\mathrm{Re}\,}}\left( \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z) \right) \end{aligned}$$
(A.50)
$$\begin{aligned}&\quad +\,\frac{2}{ \sqrt{| I_N|}}{{\,\mathrm{Re}\,}}G_{b a}(z) \sum _{ \alpha \in I_N} {{\,\mathrm{Im}\,}}\left( \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z) \right) \end{aligned}$$
(A.51)
$$\begin{aligned}&\leqslant C N^{ \sigma +3 \omega + 12 \varepsilon _2}\left( \frac{{\widehat{\ell }}}{N}\right) ^{1/3}. \end{aligned}$$
(A.52)

In the last line, we used (A.1), (A.2), and repeated the computations for (A.32) to obtain

$$\begin{aligned} \frac{2}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} {{\,\mathrm{Re}\,}}\left( \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{bi}(z) \right) \leqslant C N^{\sigma +3 \omega + 8 \varepsilon _2}.\nonumber \\ \end{aligned}$$
(A.53)

Differentiating further, we find terms such as

$$\begin{aligned} \frac{(k+1)!}{ \sqrt{| I_N|}} \sum _{ \alpha \in I_N} {{\,\mathrm{Im}\,}}\left( \langle {\mathbf {q}}_\alpha ,G(z){\mathbf {e}}_a\rangle G_{b a}(z)^k \langle {\mathbf {e}}_b,G(z){\mathbf {q}}_\alpha \rangle - \frac{1}{N} \sum _{i=1}^N G_{i a }(z) G_{ba}(z)^k G_{bi}(z) \right) \end{aligned}$$
(A.54)

These higher derivatives are bounded exactly as the second derivative was. For example, in (A.54), we separate out the \(G_{ba}^k\) term and bounding it using (A.1). \(\quad \square \)

Symmetrized Moment Observables

In this section, we define a generalization of the moment observables given in Definition 4.3, which facilitated the proof of decorrelation estimates for entries of one or two eigenvectors. These generalized observables lead to decorrelation estimates for more than two eigenvectors, which may be of independent interest. For brevity, we only verify that the observables follow a parabolic equation. We omit the proofs of the corresponding decorrelation estimates, since they are straightforward applications of the maximum principle, as in Sect. 4.

Consider a configuration of n particles \(\varvec{\xi }\) as in Sect. 3.1. We denote by \(i_1,\dots ,i_p\) the sites where there is at least one particle and define the set of vertices

$$\begin{aligned} {\mathscr {V}}_{\varvec{\xi }} = \{(i_q,a)\in {\mathbb {N}}^2,\, q\in [\![1,p]\!],\, a\in [\![1,\xi _{i_q}]\!] \}. \end{aligned}$$

Note that \({\mathscr {V}}_{\varvec{\xi }}\) differs from \({\mathcal {V}}_{\varvec{\xi }}\) (defined in (3.1)) since we do not double the number of particles here. We define now a set of matchings \({\mathfrak {M}}_{\varvec{\xi }}\) as the set of functions \(\sigma \) such that if \(v\in {\mathscr {V}}_{\varvec{\xi }}\), then \(\sigma (v)=(\sigma _1(v),\sigma _2(v))\in [\![1,2n]\!]^2\) with \(\sigma _1(v)<\sigma _2(v)\) and \(\bigcup _{v\in {\mathscr {V}}_{\varvec{\xi }}}\{\sigma _1(v),\sigma _2(v)\}=[\![1,2n]\!]\). This matches each particle to a pair of distinct indices in \([\![1,2n]\!]\). Note that \(\vert {\mathfrak {M}}_{\varvec{\xi }}\vert =2^{-n}(2n)!\) (Fig. 4).

Fig. 4
figure 4

Examples

We then define the generalized moment observable as

Proposition 1

For all \(s\in (0,1)\), the perfect matching observable \(f_s\) defined in (3.2) satisfies the equation

$$\begin{aligned} \partial _s g_s(\varvec{\xi }) = \sum _{k\ne \ell } \xi _k(1+2\xi _\ell ) \frac{g_s(\varvec{\xi }^{k,\ell })-g_s(\varvec{\xi })}{N(\lambda _k(s)-\lambda _\ell (s))^2}, \end{aligned}$$
(B.1)

where \(\varvec{\xi }^{k,\ell }\) is the configuration where we move a particle from k to \(\ell \).

Before giving the proof of Proposition 1, we recall the generator for the dynamics (2.7).

Lemma B.1

The generator acting on smooth functions of the eigenvector diffusion (2.7) is

$$\begin{aligned} {\mathcal {L}}_s = \frac{1}{2}\sum _{1\leqslant k<\ell \leqslant N}\frac{1}{N(\lambda _k-\lambda _\ell )^2}X_{k\ell }^2 \end{aligned}$$

with

$$\begin{aligned} X_{k\ell }=\sum _{\alpha =1}^N({\mathbf {u}}_k(\alpha )\partial _{{\mathbf {u}}_\ell (\alpha )}-{\mathbf {u}}_\ell (\alpha )\partial _{{\mathbf {u}}_k(\alpha )}). \end{aligned}$$

Proof of Proposition 1

To simplify the notation we define \({\mathbf {v}}_k(p)= \langle {\mathbf {q}}_{\alpha _p},{\mathbf {u}}_k\rangle \) so that

Consider \(k,\ell \in [\![1,N]\!]\) such that there is at least one particle of \(\varvec{\xi }\) on sites k and \(\ell \). Then we can write

$$\begin{aligned} \prod _{\begin{array}{c} v\in {\mathscr {V}}_{\varvec{\xi }}\\ v=(p,a) \end{array}}{\mathbf {v}}_p(\sigma _1(v)){\mathbf {v}}_p(\sigma _2(v)) = P(k,\ell ) Q(k)Q(\ell ) \end{aligned}$$

with

$$\begin{aligned} Q(j)=\prod _{\begin{array}{c} v\in {\mathscr {V}}_{\varvec{\xi }}\\ v=(j,a) \end{array}}{\mathbf {v}}_j(\sigma _1(v)){\mathbf {v}}_j(\sigma _2(v))\quad \text {and}\quad P(k,\ell )=\prod _{\begin{array}{c} v\in {\mathscr {V}}_{\varvec{\xi }}\\ v=(p,a)\\ p\ne k,\ell \end{array}}{\mathbf {v}}_p(\sigma _1(v)){\mathbf {v}}_p(\sigma _2(v)). \end{aligned}$$

Note that \(P(k,\ell )\) does not involve any eigenvectors \({\mathbf {u}}_k\) or \({\mathbf {u}}_\ell \). We have

$$\begin{aligned} X_{k\ell }^2[P(k,\ell ) Q(k)Q(\ell )]=P(k,\ell )X_{k\ell }\left[ Q(\ell )X_{k\ell }Q(k)+Q(k)X_{k\ell }Q(\ell )\right] . \end{aligned}$$
(B.2)

We now consider the first term \(X_{k\ell }Q(\ell )X_{k\ell }Q(k)+Q(\ell )X_{k\ell }^2Q(k)\); the second term can be computed similarly. We have

$$\begin{aligned} X_{k\ell }Q(k)= & {} \sum _{v=(k,a)\in {\mathscr {V}}_{\varvec{\xi }}}(-{\mathbf {v}}_\ell (\sigma _1(v)){\mathbf {v}}_k(\sigma _2(v))-{\mathbf {v}}_k(\sigma _1(v)){\mathbf {v}}_\ell (\sigma _2(v)))\nonumber \\&\quad \prod _{\begin{array}{c} v'=(k,b)\in {\mathscr {V}}_{\varvec{\xi }}\\ b\ne a \end{array}}{\mathbf {v}}_k(\sigma _1(v')){\mathbf {v}}_k(\sigma _2(v')). \end{aligned}$$
(B.3)

After symmetrization, we obtain

(B.4)

where the 4 comes from unfolding the products and \(\xi _k\xi _\ell \) comes from choosing the particles in the sum in (B.3). There are two terms when computing \(X_{k\ell }^2Q(k)\) coming from either differentiating the first term or the product in (B.3). When differentiating the first term we obtain

$$\begin{aligned} (I)= & {} \sum _{v=(k,a)\in {\mathscr {V}}_{\varvec{\xi }}}(-2{\mathbf {v}}_k(\sigma _1(v)){\mathbf {v}}_k(\sigma _1(v))+2{\mathbf {v}}_\ell (\sigma _1(v)){\mathbf {v}}_\ell (\sigma _2(v)))\nonumber \\&\quad \prod _{\begin{array}{c} v'=(k,b)\in {\mathscr {V}}_{\varvec{\xi }}\\ b\ne a \end{array}}{\mathbf {v}}_k(\sigma _1(v')){\mathbf {v}}_k(\sigma _2(v')). \end{aligned}$$
(B.5)

When differentiating the second term, we obtain a term with a double sum

$$\begin{aligned}&(II) =\sum _{\begin{array}{c} v=(k,a)\in {\mathscr {V}}_{\varvec{\xi }}\\ w=(k,b)\in {\mathscr {V}}_{\varvec{\xi }}\\ a\ne b \end{array}}\nonumber \\&\quad (-{\mathbf {v}}_\ell (\sigma _1(v)){\mathbf {v}}_k(\sigma _2(v))-{\mathbf {v}}_k(\sigma _1(v)){\mathbf {v}}_\ell (\sigma _2(v)))(-{\mathbf {v}}_\ell (\sigma _1(w)){\mathbf {v}}_k(\sigma _2(w))-{\mathbf {v}}_k(\sigma _1(w)){\mathbf {v}}_\ell (\sigma _2(w)))\nonumber \\&\quad \times \prod _{\begin{array}{c} v'=(k,c)\in {\mathscr {V}}_{\varvec{\xi }}\\ c\ne a,b \end{array}}{\mathbf {v}}_k(\sigma _1(v')){\mathbf {v}}_k(\sigma _2(v')). \end{aligned}$$
(B.6)

After symmetrization, we have

(B.7)

where the \(\xi _k\) comes from the sum in (B.5) and the second term stems from the identity \({\mathcal {M}}(\varvec{\xi }^{k,\ell })=\frac{2\xi _\ell +1}{2\xi _k-1}{\mathcal {M}}(\varvec{\xi })\). Similarly, the symmetrization gives

(B.8)

Finally, when summing (B.4), (B.7), (B.8), and adding the second term coming from (B.2), we obtain

$$\begin{aligned} X_{k\ell }^2g_s(\varvec{\xi }) = 2\xi _k(1+2\xi _\ell )(g_s(\varvec{\xi }^{k,\ell })-g_s(\varvec{\xi })) + 2\xi _\ell (1+2\xi _k)(g_s(\varvec{\xi }^{\ell ,k})-g_s(\varvec{\xi })). \end{aligned}$$

If there is a particle on site k and not on site \(\ell \), the computation is similar but easier and if there are no particles in site k and \(\ell \) then \(X_{k\ell }g_s(\varvec{\xi })=0\). This completes the proof of Proposition 1. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benigni, L., Lopatto, P. Fluctuations in Local Quantum Unique Ergodicity for Generalized Wigner Matrices. Commun. Math. Phys. 391, 401–454 (2022). https://doi.org/10.1007/s00220-022-04314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04314-z

Navigation