Skip to main content
Log in

Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The multiscale entanglement renormalization ansatz describes quantum many-body states by a hierarchical entanglement structure organized by length scale. Numerically, it has been demonstrated to capture critical lattice models and the data of the corresponding conformal field theories with high accuracy. However, a rigorous understanding of its success and precise relation to the continuum is still lacking. To address this challenge, we provide an explicit construction of entanglement-renormalization quantum circuits that rigorously approximate correlation functions of the massless Dirac conformal field theory. We directly target the continuum theory: discreteness is introduced by our choice of how to probe the system, not by any underlying short-distance lattice regulator. To achieve this, we use multiresolution analysis from wavelet theory to obtain an approximation scheme and to implement entanglement renormalization in a natural way. This could be a starting point for constructing quantum circuit approximations for more general conformal field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Haegeman, J., Osborne, T.J., Verschelde, H., Verstraete, F.: Entanglement renormalization for quantum fields in real space. Phys. Rev. Lett. 110, 100402 (2013). arXiv:1102.5524

    Article  ADS  Google Scholar 

  3. Verstraete, F., Ignacio Cirac, J.: Continuous matrix product states for quantum fields. Phys. Rev. Lett. 104, 190405 (2010). arXiv:1002.1824

    Article  ADS  MathSciNet  Google Scholar 

  4. Brockt, C., Haegeman, J., Jennings, D., Osborne, T.J., Verstraete, F.: The continuum limit of a tensor network: a path integral representation (2012). arXiv:1210.5401

  5. Cotler, J.S., Reza Mohammadi Mozaffar, M., Mollabashi, A., Naseh, A.: Entanglement renormalization for weakly interacting fields. Phys. Rev. D 99(8), 085005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jutho Haegeman, J., Cirac, I., Osborne, T.J., Verschelde, H., Verstraete, F.: Applying the variational principle to (1+ 1)-dimensional quantum field theories. Phys. Rev. Lett. 105(25), 251601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ganahl, M., Rincón, J., Vidal, G.: Continuous matrix product states for quantum fields: an energy minimization algorithm. Phys. Rev. Lett. 118(22), 220402 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007). arXiv:cond-mat/0512165

    Article  ADS  Google Scholar 

  9. Vidal, G.: Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101(11), 110501 (2008). arXiv:quant-ph/0610099

    Article  ADS  Google Scholar 

  10. Evenbly, G., Vidal, G.é: Quantum criticality with the multi-scale entanglement renormalization ansatz. In Strongly Correlated Systems, pp. 99–130. Springer, (2013). arXiv:1109.5334

  11. Kim, I.H., Swingle, B.: Robust entanglement renormalization on a noisy quantum computer. (2017). arXiv:1711.07500

  12. Evenbly, G., White, S.R.: Entanglement renormalization and wavelets. Phys. Rev. Lett. 116, 140403 (2016). arXiv:1602.01166

    Article  ADS  MathSciNet  Google Scholar 

  13. Haegeman, J., Swingle, B., Walter, M., Cotler, J., Evenbly, G., Scholz, V.B.: Rigorous free-fermion entanglement renormalization from wavelet theory. Phys. Rev. X 8, 011003 (2018). arXiv:1707.06243

    Google Scholar 

  14. Freek, W., Walter, M.: Bosonic entanglement renormalization circuits from wavelet theory. SciPost Phys. 10, 143 (2020). arXiv:2004.11952

  15. Maldacena, J.: The large-\(N\) limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200

    Article  MathSciNet  Google Scholar 

  16. Swingle, B.: Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012). arXiv:0905.1317

    Article  ADS  Google Scholar 

  17. Bao, N., Cao, C.J., Carroll, S.M., Chatwin-Davies, A., Hunter-Jones, N., Pollack, J., Remmen, G.N.: Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence. Phys. Rev. D 91(12), 125036 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Milsted, A., Vidal, G.: Geometric interpretation of the multi-scale entanglement renormalization ansatz. arXiv preprint arXiv:1812.00529 (2018)

  19. Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015, 1–55 (2015)

    Article  MathSciNet  Google Scholar 

  20. Yang, Z., Hayden, P., Qi, X.-L.: Bidirectional holographic codes and sub-AdS locality. J. High Energy Phys. 2016, 175 (2016). arXiv:1510.03784

    Article  MathSciNet  Google Scholar 

  21. Hayden, P., Nezami, S., Qi, X.-L., Thomas, N., Walter, M., Yang, Z.: Holographic duality from random tensor networks. J. High Energy Phys. 2016, 9 (2016). arXiv:1601.01694

    Article  MathSciNet  Google Scholar 

  22. Nezami, S., Walter, M.: Multipartite entanglement in stabilizer tensor networks (2016). arXiv:1608.02595

  23. Battle, G.: Wavelets and Renormalization. World Scientific, Singapore (1999)

    Book  Google Scholar 

  24. Qi, X.-L.: Exact holographic mapping and emergent space-time geometry (2013). arXiv:1309.6282

  25. Lee, C.H.C.H.: Generalized exact holographic mapping with wavelets. Phys. Rev. B 96, 245103 (2017). arXiv:1609.06241

    Article  ADS  Google Scholar 

  26. Singh, S., Brennen, G.K.: Holographic construction of quantum field theory using wavelets (2016). arXiv:1606.05068

  27. Evenbly, G., White, S.R.: Representation and design of wavelets using unitary circuits. Phys. Rev. A 97(5), 052314 (2018). arXiv:1605.07312

    Article  ADS  Google Scholar 

  28. Francesco, P., Mathieu, P., Sénéchal, D.(eds.): Conformal Field Theory. Springer Science & Business Media (2012)

  29. Selesnick, I.W.: The design of approximate Hilbert transform pairs of wavelet bases. IEEE Trans. Signal Process. 50(5), 1144–1152 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  ADS  Google Scholar 

  31. Runyi, Yu., Ozkaramanli, H.: Hilbert transform pairs of orthogonal wavelet bases: necessary and sufficient conditions. IEEE Trans. Signal Process. 53(12), 4723–4725 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chaudhury, K.N., Unser, M.M.: Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms. IEEE Trans. Signal Process. 57(9), 3411–3425 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chaudhury, K.N., Unser, M.: On the Hilbert transform of wavelets. IEEE Trans. Signal Process. 59(4), 1890–1894 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. Achard, S., Gannaz, I., Clausel, M., Roueff, F.: New results on approximate Hilbert pairs of wavelet filters with common factors (2017). arXiv:1710.09095

  35. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186–204 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pfeifer, R.N.C., Evenbly, G., Vidal, G.: Entanglement renormalization, scale invariance, and quantum criticality. Phys. Rev. A 79(4), 040301 (2009). arXiv:0810.0580

    Article  ADS  MathSciNet  Google Scholar 

  37. Kim, I.H., Kastoryano, M.J.: Entanglement renormalization, quantum error correction, and bulk causality. J. High Energy Phys. 2017, 40 (2017). arXiv:1701.00050

    Article  MathSciNet  Google Scholar 

  38. Fuchs, J.: Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  39. Wassermann, A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of \(LSU(N)\) using bounded operators. Invent. Math. 133(3), 467–538 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zini, M.S., Wang, Z.Z.: Conformal field theories as scaling limit of anyonic chains. Commun. Math. Phys. 363, 877–953 (2018). arXiv:1706.08497

    Article  ADS  MathSciNet  Google Scholar 

  41. König, R., Scholz, V.B.: Matrix product approximations to multipoint functions in two-dimensional conformal field theory. Phys. Rev. Lett. 117(12):121601, arXiv:1601.00470 (2016)

    ADS  MathSciNet  Google Scholar 

  42. König, R., Scholz, V.B.: Matrix product approximations to conformal field theories. Nucl. Phys. B 920, 32–121 (2017). arXiv:1509.07414

    Article  ADS  MathSciNet  Google Scholar 

  43. Preskill, J.: Quantum computing in the NISQ era and beyond (2018). arXiv:1801.00862

  44. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (2003)

    MATH  Google Scholar 

  45. Carey, A., Ruijsenaars, S.: On fermion gauge groups, current algebras and Kac-Moody algebras. Acta Applicandae Mathematica 10, 1–86 (1987)

    Article  MathSciNet  Google Scholar 

  46. Lundberg, L.-E.: Quasi-free “second quantization.” Commun. Math. Phys. 50, 103–112 (1976)

  47. Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publications of the Research Institute for Mathematical Sciences 6, 385–442 (1971)

  48. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Boston (2008)

    MATH  Google Scholar 

  49. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  50. Selesnick, I.W.: Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett. 8, 170–173 (2001)

    Article  ADS  Google Scholar 

  51. Bravyi, S.B., Kitaev, A.Y.: Fermionic quantum computation. Ann. Phys. 298, 210–226 (2002). arXiv: quant-ph/0003137

    Article  ADS  MathSciNet  Google Scholar 

  52. Jozsa, R., Miyake, A.: Matchgates and classical simulation of quantum circuits. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 464, 3089–3106 (2008). arXiv:0804.4050

  53. Corboz, P., Vidal, G.: Fermionic multiscale entanglement renormalization ansatz. Phys. Rev. B 80, 165129 (2009). arXiv:0907.3184

    Article  ADS  Google Scholar 

  54. Milsted, A., Vidal, G.: Tensor networks as conformal transformations. (2018). arXiv:1805.12524

Download references

Acknowledgements

We acknowledge interesting discussions with Sukhbinder Singh. We would like to thank the anonymous referees for their thoughtful feedback. MW acknowledges support by the NWO through Veni grant no. 680-47-459. VBS expresses his thanks to the University of Amsterdam and the CWI for their hospitality. He acknowledges funding by the ERC consolidator grant QUTE and thanks Frank Verstraete for discussions and his support. BGS is supported by the Simons Foundation as part of the It From Qubit Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freek Witteveen.

Additional information

Communicated by M. Christandl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs of Wavelet Lemmas

Proofs of Wavelet Lemmas

In this section we will prove some technical lemmas involving wavelets, amongst which Lemma 3.1, Lemma 3.2, Lemma 3.3. We first state a simple Lipschitz bound for the Fourier transforms of wavelet and scaling filters.

Lemma A.1

Let \(g_s\) be scaling filter supported in \(\{0,\dots ,M-1\}\). Then the corresponding wavelet filter \(g_w\), defined in Eq. (3.3), is supported in \(\{2-M,\dots ,1\}\) and we have that

$$\begin{aligned} |{\hat{g}}_s(\theta ) - \sqrt{2} |&\leqslant \frac{M^2}{\sqrt{2}} \, |\theta |, \\ |{\hat{g}}_w(\theta ) |&\leqslant \frac{M(M+1)}{\sqrt{2}} \, |\theta |. \end{aligned}$$

for all \(\theta \in [-\pi ,\pi ]\).

Proof

By Eq. (3.2), \(\Vert {\hat{g}}_s \Vert _\infty =\sqrt{2}\) and \({\hat{g}}_s(0) = \sqrt{2}\). Hence,

$$\begin{aligned} \Vert {\hat{g}}_s' \Vert _\infty \leqslant \left( \sum _{n=0}^{M-1} n \right) \Vert g_s\Vert _\infty = \frac{M(M-1)}{2} \Vert g_s\Vert _\infty \leqslant \frac{M(M-1)}{2} \Vert {\hat{g}}_s\Vert _\infty \leqslant \frac{M^2}{\sqrt{2}}, \end{aligned}$$

where we used that \(\Vert f\Vert _\infty \leqslant \frac{1}{2\pi } \Vert {\hat{f}}\Vert _1 \leqslant \Vert {\hat{f}}\Vert _\infty \) for any trigonometric polynomial. Therefore,

$$\begin{aligned} |{\hat{g}}_s(\theta ) - \sqrt{2} |\leqslant |{\hat{g}}_s(\theta ) - {\hat{g}}_s(0) |\leqslant \Vert {\hat{g}}_s' \Vert _\infty \, |\theta |\leqslant \frac{M^2}{\sqrt{2}} \, |\theta |. \end{aligned}$$

Now consider the corresponding wavelet filter \(g_w\) which by Eqs. (3.3) and (3.2) satisfies \(\Vert {\hat{g}}_w \Vert _\infty =\sqrt{2}\) and \({\hat{g}}_w(0) = 0\) and is supported in \(\{2-M,\dots ,1\}\). Then, similarly as above,

$$\begin{aligned} \Vert {\hat{g}}_w' \Vert _\infty \leqslant \left( \sum _{n=2-M}^1 |n|\right) \Vert g_w\Vert _\infty \leqslant \frac{M(M+1)}{2} \Vert {\hat{g}}_w\Vert _\infty \leqslant \frac{M(M+1)}{\sqrt{2}}, \end{aligned}$$

so we obtain

$$\begin{aligned} |{\hat{g}}_w(\theta ) |= |{\hat{g}}_w(\theta ) - {\hat{g}}_w(0) |\leqslant \Vert {\hat{g}}_w' \Vert _\infty \, |\theta |\leqslant \frac{M(M+1)}{\sqrt{2}} \, |\theta |. \end{aligned}$$

\(\square \)

In practice, the bounds in Lemma A.1 can be pessimistic. In principle, if the number of vanishing moments of the wavelets increase, one expects better dependence of the bounds on the size of the support, although we are not aware of better bounds than those in Lemma A.1 for approximate Hilbert pair wavelets.

We now proceed to prove the lemmas in Sect. 3.4. Our main tool is the following technical lemma.

Lemma A.2

Let \(\chi \in H^{-K}({\mathbb {R}})\) such that \({\hat{\chi }}\in L^\infty ({\mathbb {R}})\) and there exists a constant \(C>0\) such that \(|{\hat{\chi }}(\omega ) |\leqslant C |\omega |^K\) for all \(|\omega |\leqslant \pi \). Define \(C_\chi := (C^2 + \Vert {\hat{\chi }}\Vert ^2_\infty / 3)^{1/2}\). Then, for all \(f\in H^K({\mathbb {R}})\) and \(j\in {\mathbb {Z}}\) we have that

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}} |\left\langle \chi _{j,k}, f\right\rangle |^2 \leqslant 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

where \(\chi _{j,k}(x) := 2^{\frac{j}{2}} \chi (2^j x - k)\). Similarly, for all \(f\in H^K({\mathbb {S}}^1)\) and \(j\geqslant 0\) we have that

$$\begin{aligned} \sum _{k=1}^{2^j} |\left\langle \chi _{j,k}^{{{\,\mathrm{per}\,}}}, f\right\rangle |^2 \leqslant 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

where \(\chi ^{{{\,\mathrm{per}\,}}}_{j,k}(x) = \sum _{m \in {\mathbb {Z}}} \chi _{j,k}(x + m)\).

Proof

For \(f\in H^K({\mathbb {R}})\), we start with

$$\begin{aligned} \sum _{k \in {\mathbb {Z}}} \left|\left\langle \chi _{j,k}, f\right\rangle \right|^2&= \sum _{k \in {\mathbb {Z}}} \left|\frac{1}{2\pi } \left\langle \widehat{\chi _{j,k}}, {\widehat{f}}\right\rangle \right|^2 \nonumber \\&= \sum _{k \in {\mathbb {Z}}} \left|\frac{1}{2\pi } \int _{-\infty }^{\infty } 2^{-j/2}e^{i\omega 2^{-j}k} \overline{{\hat{\chi }}(2^{-j}\omega )} {\hat{f}}(\omega ) d\omega \right|^2 \nonumber \\&= \sum _{k\in {\mathbb {Z}}} \left|\frac{1}{2\pi } \int _{-\infty }^\infty 2^{j/2} \overline{{\hat{\chi }}(\omega )} {\hat{f}}(2^j\omega ) e^{i\omega k} d\omega \right|^2. \end{aligned}$$
(A.1)

We can interpret this as the squared norm of the Fourier coefficients of the \(2\pi \)-periodic function defined by

$$\begin{aligned} F(\theta ) := \sum _{m\in {\mathbb {Z}}} 2^{j/2} \overline{{\hat{\chi }}(\theta + 2\pi m)} {\hat{f}}(2^j(\theta + 2\pi m)), \end{aligned}$$

provided the latter is square integrable. To see this and obtain a quantitative upper bound, we note that, for every \(\theta \in [-\pi ,\pi ]\),

$$\begin{aligned} |F(\theta )|^2&\leqslant 2^j \sum _{m\in {\mathbb {Z}}} \left|\frac{{\hat{\chi }}(\theta + 2\pi m)}{(\theta + 2\pi m)^K} \right|^2 \sum _{m \in {\mathbb {Z}}} \left|(\theta + 2\pi m)^K {\hat{f}}(2^j(\theta + 2\pi m)) \right|^2 \nonumber \\&= 2^{-(2K-1)j} \sum _{m\in {\mathbb {Z}}} \left|\frac{{\hat{\chi }}(\theta + 2\pi m) }{(\theta + 2\pi m)^K} \right|^2 \sum _{m\in {\mathbb {Z}}} \left|(2^j(\theta + 2\pi m))^K {\hat{f}}(2^j(\theta + 2\pi m)) \right|^2 \end{aligned}$$
(A.2)

by the Cauchy-Schwarz inequality. To bound the left-hand side series, we split off the term for \(m=0\) and use the assumptions on \({\hat{\chi }}\) to bound, for \(|\theta |\leqslant \pi \),

$$\begin{aligned} \sum _{m\in {\mathbb {Z}}} \left|\frac{{\hat{\chi }}(\theta + 2\pi m)}{(\theta + 2\pi m)^K} \right|^2&= \left|\frac{{\hat{\chi }}(\theta )}{\theta ^K} \right|^2 + \sum _{m\ne 0} \left|\frac{{\hat{\chi }}(\theta + 2\pi m)}{(\theta + 2\pi m)^K} \right|^2 \leqslant C^2 + \sum _{m\ne 0} \frac{|{\hat{\chi }}(\theta + 2\pi m)|^2}{|\theta + 2\pi m|^{2K}} \nonumber \\&\leqslant C^2 + \Vert {\hat{\chi }}\Vert _\infty ^2 \sum _{m=1}^\infty \frac{2}{(\pi m)^{2K}} \leqslant C^2 + \frac{\Vert {\hat{\chi }}\Vert ^2_\infty }{3} = C_\chi ^2 \end{aligned}$$
(A.3)

If we plug this into Eq. (A.2) then we obtain

$$\begin{aligned} |F(\theta )|^2 \leqslant 2^{-(2K-1)j} C_\chi ^2 \sum _{m\in {\mathbb {Z}}} \left|(2^j(\theta + 2\pi m))^K {\hat{f}}(2^j(\theta + 2\pi m)) \right|^2 \end{aligned}$$

and hence

$$\begin{aligned} \frac{1}{2\pi } \int _{-\pi }^\pi |F(\theta )|^2 d\theta&\leqslant 2^{-(2K - 1)j} \frac{C_\chi ^2}{2\pi } \int _{-\infty }^\infty \left|(2^j \omega )^K {\hat{f}}(2^j\omega ) \right|^2 d\omega \\&= 2^{-2Kj} \frac{C_\chi ^2}{2\pi } \int _{-\infty }^\infty \left|\omega ^K {\hat{f}}(\omega ) \right|^2 d\omega = 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

which is finite since \(f\in H^K({\mathbb {R}})\). This shows that \(F \in L^2({\mathbb {R}}/2\pi {\mathbb {Z}})\). By Parseval’s theorem we can thus bound Eq. (A.1) by

$$\begin{aligned} \sum _{k \in {\mathbb {Z}}} \left|\left\langle \chi _{j,k}, f\right\rangle \right|^2 \leqslant 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2 \leqslant 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2 \end{aligned}$$

as desired.

The proof for \(f\in H^K({\mathbb {S}}^1)\) proceeds similarly. First note that \(\widehat{g^{{{\,\mathrm{per}\,}}}}(m) = {\hat{g}}(2\pi m)\) if we periodize a function \(g\in L^2({\mathbb {R}})\) by \(g^{{{\,\mathrm{per}\,}}}(x) := \sum _{n\in {\mathbb {Z}}} g(x+n)\), so

$$\begin{aligned} \sum _{k=1}^{2^j} \left|\left\langle \chi ^{{{\,\mathrm{per}\,}}}_{j,k}, f\right\rangle \right|^2 = \sum _{k=1}^{2^j} \left|\left\langle \widehat{\chi ^{{{\,\mathrm{per}\,}}}_{j,k}}, {\widehat{f}}\right\rangle \right|^2 = \sum _{k=1}^{2^j} \left|\sum _{m\in {\mathbb {Z}}} 2^{-j/2}e^{i2\pi m2^{-j}k} \overline{{\hat{\chi }}(2^{-j}2\pi m)} {\hat{f}}(m) \right|^2 \end{aligned}$$
(A.4)

which we recognize as squared norm of the inverse discrete Fourier transform of a vector v with \(2^j\) components

$$\begin{aligned} v_l := 2^{j/2} \sum _{m\in {\mathbb {Z}}} \overline{{\hat{\chi }}(2\pi m + 2\pi 2^{-j} l)} {\hat{f}}(2^j m + l), \end{aligned}$$

where it is useful to take \(l\in \{-2^{j-1}+1,\dots ,2^{j-1}\}\). To see that the components of this vector are well-defined and obtain a quantitative bound, we estimate

$$\begin{aligned} |v_l|^2&= 2^j \left|\sum _{m\in {\mathbb {Z}}} \overline{{\hat{\chi }}(2\pi m + 2\pi 2^{-j} l)} {\hat{f}}(2^j m + l) \right|^2 \\&\leqslant 2^j \sum _{m\in {\mathbb {Z}}} \left|\frac{{\hat{\chi }}(2\pi m + 2\pi 2^{-j} l)}{(2\pi m + 2\pi 2^{-j} l)^K} \right|^2 \sum _{m\in {\mathbb {Z}}} \left|(2\pi m + 2\pi 2^{-j} l)^K {\hat{f}}(2^j m + l) \right|^2 \\&= 2^{-(2K-1)j} \sum _{m\in {\mathbb {Z}}} \left|\frac{{\hat{\chi }}(2\pi m + 2\pi 2^{-j} l)}{(2\pi m + 2\pi 2^{-j} l)^K} \right|^2 \sum _{m\in {\mathbb {Z}}} \left|(2\pi (2^j m + l))^K {\hat{f}}(2^j m + l) \right|^2. \end{aligned}$$

Since \(|2\pi 2^{-j} l|\leqslant \pi \), we can upper-bound the left-hand side series precisely as in Eq. (A.3),

$$\begin{aligned} |v_l|^2 \leqslant 2^{-(2K-1)j} C_\chi ^2 \sum _{m\in {\mathbb {Z}}} \left|(2\pi (2^j m + l))^K {\hat{f}}(2^j m + l) \right|^2, \end{aligned}$$

and obtain

$$\begin{aligned} \Vert v\Vert _2^2 \leqslant 2^{-(2K-1)j} C_\chi ^2 \sum _{n\in {\mathbb {Z}}} \left|(2\pi n)^K {\hat{f}}(n) \right|^2 = 2^{-(2K-1)j} C_\chi ^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

which is finite since \(f\in H^K({\mathbb {S}}^1)\). As before we conclude by using the Plancherel formula in Eq. (A.4) and plugging in the upper bound.

$$\begin{aligned} \sum _{k=1}^{2^j} \left|\left\langle \chi ^{{{\,\mathrm{per}\,}}}_{j,k}, f\right\rangle \right|^2 = 2^{-j} \sum _{k=1}^{2^j} |v_k|^2 \leqslant 2^{-2Kj} C_\chi ^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

which concludes the proof. \(\square \)

We next use Lemma A.2 to prove Lemma 3.1 and Lemma 3.2, which are wavelet approximation results for sufficiently smooth functions.

Proof of Lemma 3.1

For \(f\in H^K({\mathbb {R}})\) and \(j\in {\mathbb {Z}}\), we have

$$\begin{aligned} \Vert P_j f - f \Vert ^2 = \sum _{l > j} \sum _{k \in {\mathbb {Z}}} |\left\langle \psi _{l,k},f\right\rangle |^2. \end{aligned}$$

because the wavelets form an orthonormal basis. We would like to bound the inner series by using Lemma A.2. For this, note that since \(\hat{g}_s\) is a trigonometric polynomial with a zero of order K at \(\theta = \pi \), there exists a constant C such that

$$\begin{aligned} \frac{1}{\sqrt{2}}|\hat{g}_w(\theta ) |= \frac{1}{\sqrt{2}}|\hat{g}_s(\theta + \pi ) |\leqslant C |\theta |^K. \end{aligned}$$
(A.5)

Using Eq. (3.6) and \(\Vert {\hat{\phi }}\Vert _\infty =1\), it follows that

$$\begin{aligned} |{\hat{\psi }}(\omega ) |= |\frac{1}{\sqrt{2}}\hat{g}_w(\frac{\omega }{2}) \hat{\phi }(\frac{\omega }{2}) |\leqslant \frac{C}{2^K} |\omega |^K. \end{aligned}$$

Since moreover \(\Vert {\hat{\psi }}\Vert _\infty =1\), we can invoke Lemma A.2 with \(\chi =\psi \) and obtain that

$$\begin{aligned} \Vert P_j f - f \Vert ^2 \leqslant \sum _{l > j} 2^{-2Kl} C_{{{\,\mathrm{UV}\,}}}^2 \Vert f^{(K)} \Vert ^2 \leqslant 2^{-2Kj} C_{{{\,\mathrm{UV}\,}}}^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

where \(C_{{{\,\mathrm{UV}\,}}}^2 = C^2/4^K + 1/3 \leqslant C^2 + 1/3\).

In the same way we find that, for any \(f\in H^K({\mathbb {S}}^1)\) and \(j\geqslant 0\),

$$\begin{aligned} \Vert P^{{{\,\mathrm{per}\,}}}_j f - f \Vert ^2 = \sum _{l > j} \sum _{k=1}^{2^l} |\left\langle \psi ^{{{\,\mathrm{per}\,}}}_{l,k},f\right\rangle |^2 \leqslant 2^{-2Kj} C_{{{\,\mathrm{UV}\,}}}^2 \Vert f^{(K)} \Vert ^2, \end{aligned}$$

again by Lemma A.2.

For the last assertion, we use Lemma A.1 to see that, for \(K=1\), Eq. (A.5) always holds with \(C=M(M+1)/2\), hence we have \(C_{{{\,\mathrm{UV}\,}}} \leqslant 2M^2\). \(\square \)

Proof of Lemma 3.2

The trigonometric polynomial \({\hat{g}}_s\) satisfies \({\hat{g}}_s(0)=\sqrt{2}\), so there is a constant \(C>0\) such that

$$\begin{aligned} |\frac{1}{\sqrt{2}} {\hat{g}}_s(\theta ) - 1|\leqslant C |\theta |\end{aligned}$$
(A.6)

for \(\theta \in [-\pi ,\pi ]\). Using the infinite product formula (3.8), it follows that, for all \(|\omega |\leqslant \pi \),

$$\begin{aligned} |{\hat{\phi }}(\omega ) - 1 |&= |\prod _{k=1}^\infty \frac{1}{\sqrt{2}} {\hat{g}}_s(2^{-k}\omega ) - 1 |\leqslant \sum _{k=1}^\infty |\frac{1}{\sqrt{2}} {\hat{g}}_s(2^{-k}\omega ) - 1 |\leqslant \sum _{k=1}^\infty \frac{C}{\sqrt{2}} 2^{-k} |\omega |= \frac{C}{\sqrt{2}} |\omega |\end{aligned}$$
(A.7)

using a telescoping sum and the fact that \(|{\hat{g}}_s|\leqslant \sqrt{2}\) (in fact, this holds for all \(\omega \in {\mathbb {R}}\), but we will not need this). Now recall from Sobolev embedding theory that \({\hat{f}} \in L^1({\mathbb {R}})\) for any \(f\in H^1({\mathbb {R}})\). Thus, the continuous representative of f can be computed by the inverse Fourier transform, i.e.,

$$\begin{aligned} f(x) = \frac{1}{2\pi } \int _{-\infty }^\infty {\hat{f}}(\omega ) e^{i\omega x} d\omega \end{aligned}$$

for all \(x\in {\mathbb {R}}\). As a consequence,

$$\begin{aligned} \Vert \alpha _j f - f_j \Vert ^2 = \sum _{k\in {\mathbb {Z}}} \left|\left\langle \phi _{j,k}, f\right\rangle - 2^{-j/2} f(2^{-j} k)\right|^2 = \sum _{k\in {\mathbb {Z}}} \left|\left\langle \chi _{j,k}, f\right\rangle \right|^2 \end{aligned}$$

where \(\chi := \phi - \delta _0\). Now, \({\hat{\chi }} = {\hat{\phi }} - {\mathbf {1}}\), hence \(\Vert {\hat{\chi }}\Vert _\infty \leqslant 2\). Together with the bound in Eq. (A.7) we obtain from Lemma A.2 that

$$\begin{aligned} \Vert \alpha _j f - f_j \Vert ^2 \leqslant 2^{-2j} C_\phi \Vert f' \Vert ^2, \end{aligned}$$

where \(C_\phi := C^2 + \frac{4}{3}\). The proof for \(H^1({\mathbb {S}}^1)\) proceeds completely analogously. Finally, Lemma A.1 shows that if the scaling filter is supported in \(\{0,\dots ,M-1\}\) then Eqs. (A.6) and (A.7) always hold with \(C=M^2/2\). Thus, \(C_\phi \leqslant 2 M^2\). \(\square \)

Finally, we prove Lemma 3.3, which is an approximation result for compactly supported functions.

Proof of Lemma 3.3

Let us denote by S the support of f. Since the scaling functions for fixed j form an orthonormal basis of \(V_j\), and using Cauchy-Schwarz, we find that

$$\begin{aligned} \Vert P_j f\Vert ^2 = \sum _{k\in {\mathbb {Z}}} |\left\langle \phi _{j,k}, f\right\rangle |^2 \leqslant \Vert f\Vert ^2 \sum _{k\in {\mathbb {Z}}} \int _S |\phi _{j,k}(x) |^2 \, dx = \Vert f\Vert ^2 \int _{2^j S} \sum _{k\in {\mathbb {Z}}} |\phi (y - k)|^2 \, dy. \end{aligned}$$

This allows us to conclude that

$$\begin{aligned} \Vert P_j f\Vert ^2 \leqslant \Vert f\Vert ^2 2^j C_{{{\,\mathrm{IR}\,}}}^2 D(f), \end{aligned}$$

which confirms the claim. If \(\phi \) is bounded and supported on an interval of width M, we can bound \(\sum _{k\in {\mathbb {Z}}} |\phi (y - k)|^2 \leqslant M \Vert \phi \Vert _\infty ^2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witteveen, F., Scholz, V., Swingle, B. et al. Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions. Commun. Math. Phys. 389, 75–120 (2022). https://doi.org/10.1007/s00220-021-04274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04274-w

Navigation