Skip to main content
Log in

Dg Manifolds, Formal Exponential Maps and Homotopy Lie Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the relation between ‘formal exponential maps,’ the Atiyah class, and Kapranov \(L_\infty [1]\) algebras associated with dg manifolds in the \(C^\infty \) context. We prove that, for a dg manifold, a ‘formal exponential map’ exists if and only if the Atiyah class vanishes. Inspired by Kapranov’s construction of a homotopy Lie algebra associated with the holomorphic tangent bundle of a complex manifold, we prove that the space of vector fields on a dg manifold admits an \(L_\infty [1]\) algebra structure, unique up to isomorphism, whose unary bracket is the Lie derivative with respect to the homological vector field, whose binary bracket is a 1-cocycle representative of the Atiyah class, and whose higher multibrackets can be computed by a recursive formula. For the dg manifold \((T^{0,1}_X[1],{\bar{\partial }})\) arising from a complex manifold X, we prove that this \(L_\infty [1]\) algebra structure is quasi-isomorphic to the standard \(L_\infty [1]\) algebra structure on the Dolbeault complex \(\Omega ^{0,\bullet }(T^{1,0}_X)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [57].

  2. It is also called tangent lift in the literature [33, 38].

References

  1. Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(7), 1405–1429 (1997). https://doi.org/10.1142/S0217751X97001031

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bandiera, R.: Formality of Kapranov’s brackets in Kähler geometry via pre-Lie deformation theory. Int. Math. Res. Not. IMRN 21, 6626–6655 (2016). https://doi.org/10.1093/imrn/rnv362

  3. Bandiera, R.: Homotopy abelian \(L_{\infty } \) algebras and splitting property. Rend. Mat. Appl. (7) 37(1–2), 105–122 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bandiera, R., Chen, Z., Stiénon, M., Xu, P.: Shifted derived Poisson manifolds associated with Lie pairs. Commun. Math. Phys. 375(3), 1717–1760 (2020). https://doi.org/10.1007/s00220-019-03457-w

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Behrend, K., Liao, H.-Y., Xu, P.: Derived Differentiable Manifolds (2020). arXiv:2006.01376 [math.DG]

  6. Boardman, J.M.: The principle of signs. Enseign. Math. (2) 12, 191–194 (1966)

    MathSciNet  MATH  Google Scholar 

  7. Bonavolontà, G., Poncin, N.: On the category of Lie \(n\)-algebroids. J. Geom. Phys. 73, 70–90 (2013). https://doi.org/10.1016/j.geomphys.2013.05.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bruce, A.J.: From \(L_\infty \)-algebroids to higher Schouten/Poisson structures. Rep. Math. Phys. 67(2), 157–177 (2011). https://doi.org/10.1016/S0034-4877(11)00010-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bruce, A.J., Grabowski, J., Vitagliano, L.: Representations up to homotopy from weighted Lie algebroids. J. Lie Theory 28(3), 715–737 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Căldăraru, A., Willerton, S.: The Mukai pairing. I. A categorical approach. N. Y. J. Math. 16, 61–98 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Carchedi, D., Roytenberg, D.: Homological Algebra for Superalgebras of Differentiable Functions (2012). arXiv:1212.3745 [math.AG]

  12. Carchedi, D., Roytenberg, D.: On theories of superalgebras of differentiable functions. Theory Appl. Categ. 28(30), 1022–1098 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Cattaneo, A.S., Schätz, F.: Introduction to supergeometry. Rev. Math. Phys. 23(6), 669–690 (2011). https://doi.org/10.1142/S0129055X11004400

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Stiénon, M., Xu, P.: From Atiyah classes to homotopy Leibniz algebras. Commun. Math. Phys. 341(1), 309–349 (2016). https://doi.org/10.1007/s00220-015-2494-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Xiang, M., Xu, P.: Atiyah and Todd classes arising from integrable distributions. J. Geom. Phys. 136, 52–67 (2019). https://doi.org/10.1016/j.geomphys.2018.10.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, Z., Xiang, M., Xu, P.: Hochschild cohomology of dg manifolds associated to integrable distributions (2021). arXiv:2103.08096 [math.DG]

  17. Cheng, J., Chen, Z., Ni, D.: Hopf algebras arising from dg manifolds. J. Algebra 584, 19–68 (2021). https://doi.org/10.1016/j.jalgebra.2021.05.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolgushev, V.A.: Covariant and equivariant formality theorems. Adv. Math. 191(1), 147–177 (2005). https://doi.org/10.1016/j.aim.2004.02.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Emmrich, C., Weinstein, A.: The differential geometry of Fedosov’s quantization. In: Lie Theory and Geometry, Vol. 123, pp. 217–239. Progr. Math. Birkhäuser Boston, Boston, MA (1994) https://doi.org/10.1007/978-1-4612-0261-5_7

  20. Grabowska, K., Grabowski, J.: \(n\)-Tuple principal bundles. Int. J. Geom. Methods Mod. Phys. 15(12), 1850211, 18 (2018). https://doi.org/10.1142/S0219887818502110

  21. Grabowski, J.: Modular classes of skew algebroid relations. Transform. Groups 17(4), 989–1010 (2012). https://doi.org/10.1007/s00031-012-9197-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Jotz Lean, M.: Lie 2-algebroids and matched pairs of 2-representations: a geometric approach. Pac. J. Math. 301(1), 143–188 (2019). https://doi.org/10.2140/pjm.2019.301.143

    Article  MathSciNet  MATH  Google Scholar 

  23. Jotz Lean, M., Mehta, RA, Papantonis, T: Modules and representations up to homotopy of Lie n-algebroids (2020). arXiv:2001.01101 [math.DG]

  24. Joyce, D.: An introduction to d-manifolds and derived differential geometry. In: Moduli Spaces. Vol. 411, pp. 230–281. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2014)

  25. Kapranov, M.: Rozansky–Witten invariants via Atiyah classes. Compos. Math. 115(1), 71–113 (1999). https://doi.org/10.1023/A:1000664527238

    Article  MathSciNet  MATH  Google Scholar 

  26. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). https://doi.org/10.1023/B:MATH.0000027508.00421.bf

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kontsevich, M.: Rozansky–Witten invariants via formal geometry. Compos. Math. 115(1), 115–127 (1999). https://doi.org/10.1023/A:1000619911308

    Article  MathSciNet  MATH  Google Scholar 

  28. Kotov, A., Strobl, T.: Characteristic classes associated to \(Q\)-bundles. Int. J. Geom. Methods Mod. Phys. 12(1), 1550006, 26 (2015). https://doi.org/10.1142/S0219887815500061

  29. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995). https://doi.org/10.1080/00927879508825335

    Article  MathSciNet  MATH  Google Scholar 

  30. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Exponential map and \(L_\infty \) algebra associated to a Lie pair. C. R. Math. Acad. Sci. Paris 350(17–18), 817–821 (2012). https://doi.org/10.1016/j.crma.2012.08.009

    Article  MathSciNet  MATH  Google Scholar 

  31. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Poincaré–Birkhoff–Witt isomorphisms and Kapranov dg-manifolds. Adv. Math. 387, Paper No. 107792, 62 pp. (2021). https://doi.org/10.1016/j.aim.2021.107792

  32. Liao, H.-Y., Stiénon, M.: Formal exponential map for graded manifolds. Int. Math. Res. Not. IMRN 3, 700–730 (2019). https://doi.org/10.1093/imrn/rnx130

    Article  MathSciNet  MATH  Google Scholar 

  33. Liao, H.-Y., Stiénon, M., Xu, P.: Formality theorem for differential graded manifolds. C. R. Math. Acad. Sci. Paris 356(1), 27–43 (2018). https://doi.org/10.1016/j.crma.2017.11.017

    Article  MathSciNet  MATH  Google Scholar 

  34. Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A.: Characteristic classes of \(Q\)-manifolds: classification and applications. J. Geom. Phys. 60(5), 729–759 (2010). https://doi.org/10.1016/j.geomphys.2010.01.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Manetti, M.: On some formality criteria for DG-Lie algebras. J. Algebra 438, 90–118 (2015). https://doi.org/10.1016/j.jalgebra.2015.04.029

    Article  MathSciNet  MATH  Google Scholar 

  36. Markarian, N.: The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem. J. Lond. Math. Soc. (2) 79(1), 129–143 (2009). https://doi.org/10.1112/jlms/jdn064

    Article  MathSciNet  MATH  Google Scholar 

  37. Mehta, R.A.: \(Q\)-Algebroids and their cohomology. J. Symplectic Geom. 7(3), 263–293 (2009)

    Article  MathSciNet  Google Scholar 

  38. Mehta, R.A., Stiénon, M., Xu, P.: The Atiyah class of a dg-vector bundle. C. R. Math. Acad. Sci. Paris 353(4), 357–362 (2015). https://doi.org/10.1016/j.crma.2015.01.019

    Article  MathSciNet  MATH  Google Scholar 

  39. Mehta, R.A.: Supergroupoids, double structures, and equivariant cohomology (2006). arXiv:math/0605356 [math.DG]

  40. Pridham, J.P.: A differential graded model for derived analytic geometry. Adv. Math. 360, 106922, 29 (2020). https://doi.org/10.1016/j.aim.2019.106922

  41. Pridham, J.P.: An outline of shifted Poisson structures and deformation quantisation in derived differential geometry (2018). arXiv:1804.07622 [math.DG]

  42. Ramadoss, A.C.: The big Chern classes and the Chern character. Int. J. Math. 19(6), 699–746 (2008). https://doi.org/10.1142/S0129167X08004856

    Article  MathSciNet  MATH  Google Scholar 

  43. Roberts, J., Willerton, S.: On the Rozansky–Witten weight systems. Algebraic Geom. Topol. 10(3), 1455–1519 (2010). https://doi.org/10.2140/agt.2010.10.1455

    Article  MathSciNet  MATH  Google Scholar 

  44. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson Brackets and Beyond (Manchester, 2001), Vol. 315, pp. 169–185. Contemp. Math. Amer. Math. Soc., Providence, RI (2002). https://doi.org/10.1090/conm/315/05479

  45. Sawon, J.: Rozansky–Witten invariants of hyperkähler manifolds. Thesis (Ph.D.)–University of Cambridge (2000). arXiv:math/0404360 [math.DG]

  46. Schwarz, A.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155(2), 249–260 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ševera, P.: Letters to Alan Weinstein about Courant algebroids (2017). arXiv:1707.00265 [math.DG]

  48. Ševera, P.: Some title containing the words “homotopy” and “symplectic”, e.g. this one. In: Travaux Mathématiques. Fasc. XVI. Vol. 16, pp. 121–137. Trav. Math. Univ. Luxemb., Luxembourg (2005)

  49. Shoikhet, B.: On the Duflo formula for \(L_\infty \)-algebras and \(Q\)-manifolds (1998). arXiv:math/9812009 [math.QA]

  50. Spivak, D.I.: Derived smooth manifolds. Duke Math. J. 153(1), 55–128 (2010). https://doi.org/10.1215/00127094-2010-021

    Article  MathSciNet  MATH  Google Scholar 

  51. Stiénon, M., Xu, P.: Atiyah classes and Kontsevich–Duflo type theorem for DG manifolds. In: Homotopy Algebras, Deformation Theory and Quantization, Vol. 123, pp. 63–110. Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw (2021). https://doi.org/10.4064/bc123-3

  52. Vitagliano, L.: On the strong homotopy associative algebra of a foliation. Commun. Contemp. Math. 17(2), 1450026, 34 (2015). https://doi.org/10.1142/S0219199714500266

  53. Voglaire, Y., Xu, P.: Rozansky–Witten-type invariants from symplectic Lie pairs. Commun. Math. Phys. 336(1), 217–241 (2015). https://doi.org/10.1007/s00220-014-2221-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Voronov, T.T.: \(Q\)-Manifolds and higher analogs of Lie algebroids. In: XXIX Workshop on Geometric Methods in Physics. Vol. 1307, pp. 191–202. AIP Conf. Proc. Amer. Inst. Phys., Melville, NY (2010)

  55. Voronov, T.T.: \(Q\)-Manifolds and Mackenzie theory. Commun. Math. Phys. 315(2), 279–310 (2012). https://doi.org/10.1007/s00220-012-1568-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Voronov, T.T.: Graded geometry, \(Q\)-manifolds, and microformal geometry. Fortschr. Phys. 67(8–9), 1910023 (2019). https://doi.org/10.1002/prop.201910023

    Article  MathSciNet  Google Scholar 

  57. Yano, K., Ishihara, S.: Tangent and cotangent bundles: differential geometry. In: Pure and Applied Mathematics, No. 16, pp. ix+423. Marcel Dekker, Inc., New York (1973)

Download references

Acknowledgements

We would like to thank Ruggero Bandiera, Camille Laurent-Gengoux, Hsuan-Yi Liao, Rajan Mehta and Luca Vitagliano for fruitful discussions and useful comments. Seokbong Seol is grateful to the Korea Institute for Advanced Study for its hospitality and generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by NSF Grants DMS-1707545 and DMS-2001599.

Appendix A. Fedosov Construction for Graded Manifolds

Appendix A. Fedosov Construction for Graded Manifolds

This section is to give a brief description of the Fedosov construction for graded manifolds. We refer readers to [18, 19, 32] for more details.

Throughout this section, \({\mathcal {M}}\) is a finite-dimensional graded manifold and \(\nabla \) is a torsion-free affine connection on \({\mathcal {M}}\). By abuse of notation, the induced linear connection on \({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })\) is denoted by the same symbol. The associated covariant derivative is written \(d^\nabla :\Omega ^{\bullet }({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })) \rightarrow \Omega ^{\bullet +1}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\).

Consider the map \(\nabla ^{\lightning }:{\mathfrak {X}}({\mathcal {M}})\times \Gamma \big (S(T_{{\mathcal {M}}})\big ) \rightarrow \Gamma \big (S(T_{{\mathcal {M}}})\big )\) defined by

$$\begin{aligned} \nabla ^{\lightning }_{Y}{\varvec{X}}= ({{\,\mathrm{pbw}\,}}^{\nabla })^{-1} \big ( Y\cdot {{\,\mathrm{pbw}\,}}^{\nabla }({\varvec{X}})\big ) \end{aligned}$$

for all \(Y\in {\mathfrak {X}}({\mathcal {M}})\) and \({\varvec{X}}\in \Gamma \big (S(T_{{\mathcal {M}}})\big )\).

Lemma A.1

The above map \(\nabla ^{\lightning }\) defines a flat connection on \(S(T_{{\mathcal {M}}})\).

Abusing notation, we write the same symbol \(\nabla ^{\lightning }\) to denote the induced flat connection on \({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })\). The associated covariant derivative \(d^{\nabla ^{\lightning }}:\Omega ^{\bullet }({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })) \rightarrow \Omega ^{\bullet +1}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\) satisfies \((d^{\nabla ^{\lightning }})^{2}=0\).

We use the identification

$$\begin{aligned} \Omega ^{p}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\cong \Gamma \big (\Lambda ^{p}(T_{{\mathcal {M}}}^{\vee })\otimes {\widehat{S}}(T_{{\mathcal {M}}}^{\vee })\big ) \cong \Gamma \big ({{\,\mathrm{Hom}\,}}(\Lambda ^{p}(T_{{\mathcal {M}}})\otimes S(T_{{\mathcal {M}}}),{\mathbb {K}})\big ) . \end{aligned}$$

The total degree of \(\omega \in \Omega ^{p}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\) is \(p+\left| \omega \right| \), where p is the cohomological degree and \(\left| \omega \right| \) is the internal degree of \(\omega \).

Define two operators

$$\begin{aligned} \delta :\Omega ^p({\widehat{S}}(T^\vee _{\mathcal {M}})) \rightarrow \Omega ^{p+1}({\widehat{S}}(T^\vee _{\mathcal {M}})) \end{aligned}$$

and

$$\begin{aligned} {\mathfrak {h}}:\Omega ^p({\widehat{S}}(T^\vee _{\mathcal {M}})) \rightarrow \Omega ^{p-1}({\widehat{S}}(T^\vee _{\mathcal {M}})) \end{aligned}$$

by

$$\begin{aligned}&\left( \delta \omega \right) (X_1\wedge \cdots \wedge X_{p+1}; Y_1\odot \cdots \odot Y_{q-1})\\&\quad =\sum _{i=1}^{p+1} (-1)^{i+1} \varepsilon \cdot \omega (X_1\wedge \cdots \wedge {\widehat{X}}_i\wedge \cdots \wedge X_{p+1}; X_i\odot Y_1\odot \cdots \odot Y_{q-1}) \end{aligned}$$

and

$$\begin{aligned}&\left( {\mathfrak {h}}\omega \right) (X_1\wedge \cdots \wedge X_{p-1}; Y_1\odot \cdots \odot Y_{q+1})\\&\quad =\frac{1}{p+q}\sum _{j=1}^{q+1} \varepsilon \cdot \omega (Y_j\wedge X_1\wedge \cdots \wedge X_{p-1}; Y_1\odot \cdots \odot {\widehat{Y}}_j\odot \cdots \odot Y_{q+1}) , \end{aligned}$$

for all \(\omega \in \Omega ^{p}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\) and all homogeneous \(X_1,\cdots ,X_{p+1},Y_1,\cdots ,Y_{q+1}\in {\mathfrak {X}}({\mathcal {M}})\). The symbol \(\varepsilon \) denotes the Koszul signs: either \(\varepsilon (X_1,\cdots ,X_{p+1},Y_1,\cdots ,Y_{q-1})\) or \(\varepsilon (X_1,\cdots ,X_{p-1},Y_1,\cdots ,Y_{q+1})\), as appropriate.

Both \(\delta \) and \({\mathfrak {h}}\) are \(C^\infty ({\mathcal {M}})\)-linear, and \(\delta \) is the Koszul operator. Observe that \(\delta \) has total degree \(+1\) and \({\mathfrak {h}}\) has total degree \(-1\). However neither \(\delta \) nor \({\mathfrak {h}}\) change the internal degree: \(\left| \delta \omega \right| =\left| \omega \right| \) and \(\left| {\mathfrak {h}}\omega \right| =\left| \omega \right| \).

Remark A.2

In [18, 19, 32], the operator \({\mathfrak {h}}\) is written as \(\delta ^{-1}\). We avoid this notation because \({\mathfrak {h}}\) is not an inverse map of \(\delta \), and it is rather a homotopy operator.

Lemma A.3

The operator \(\delta \) satisfies \(\delta ^{2}=0\). That is,

$$\begin{aligned} 0\rightarrow \Omega ^{0}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })) \xrightarrow {\delta } \Omega ^{1}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })) \xrightarrow {\delta } \Omega ^{2}({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })) \xrightarrow {\delta } \cdots \end{aligned}$$

is a cochain complex. Moreover, the operators \(\delta \) and \({\mathfrak {h}}\) satisfy

$$\begin{aligned} \delta \circ {\mathfrak {h}}+{\mathfrak {h}}\circ \delta = {{\,\mathrm{id}\,}}- \pi _{0} , \end{aligned}$$

where \(\pi _{0}:\Omega ^{\bullet }({\widehat{S}}(T_{{\mathcal {M}}}^{\vee }))\rightarrow C^\infty ({\mathcal {M}})\) is the natural projection.

We have the following theorem

Theorem A.4

[32, Theorem 5.6]. Let \({\mathcal {M}}\) be a finite-dimensional graded manifold and let \(\nabla \) be a torsion-free affine connection on \({\mathcal {M}}\). Then the covariant derivative \(d^{\nabla ^{\lightning }}\) decomposes as

$$\begin{aligned} d^{\nabla ^{\lightning }}=d^{\nabla }-\delta +{\widetilde{A^\nabla }} , \end{aligned}$$

where the operator \({\widetilde{A^\nabla }}: \Omega ^{\bullet }\big ({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })\big ) \rightarrow \Omega ^{\bullet +1}\big ({\widehat{S}}(T_{{\mathcal {M}}}^{\vee })\big )\) is the derivation of (total) degree \(+1\) determined by a certain element \(A^\nabla \) of \(\Omega ^{1}\big ({\mathcal {M}},{\widehat{S}}^{\ge 2}(T_{{\mathcal {M}}}^{\vee }) \otimes T_{{\mathcal {M}}}\big )\) satisfying

$$\begin{aligned} {\mathfrak {h}}\circ A^\nabla =0 . \end{aligned}$$

Remark A.5

The operator \(\widetilde{A^{\nabla }}\) increases the cohomological degree by \(+1\) and preserves the internal degree. That is, although the total degree of \(\widetilde{A^{\nabla }}\) is \(+1\), its internal degree is \(\left| \widetilde{A^{\nabla }}\right| =0\).

Write

$$\begin{aligned} A^\nabla = \sum _{n\ge 2}A^\nabla _{n}, \quad \quad A^\nabla _{n} \in \Omega ^{1}({\mathcal {M}},S^{n}(T_{{\mathcal {M}}}^{\vee })\otimes T_{{\mathcal {M}}}). \end{aligned}$$

Let \(R^\nabla \in \Omega ^{2}\big ({\mathcal {M}};{{\,\mathrm{End}\,}}(T_{{\mathcal {M}}})\big )\) denote the curvature of \(\nabla \).

Proposition A.6

We have the following recursive formula for \(A^\nabla _{n}\):

$$\begin{aligned} A^\nabla _{2}= & {} {\mathfrak {h}}\circ R^\nabla \, ,\\ A^\nabla _{n+1}= & {} {\mathfrak {h}}\circ \left( d^{\nabla }A^\nabla _{n} +\sum _{p+q=n}\frac{1}{2}[A^\nabla _{p}, A^\nabla _{q}] \right) , \quad \forall n\ge 2. \end{aligned}$$

Proof

According to Theorem A.4 and Lemma A.1, we have \(d^{\nabla ^{\lightning }} = d^{\nabla }-\delta +A^\nabla \) and \((d^{\nabla ^{\lightning }})^{2}=0\).

By Lemma A.3, we know \(\delta ^{2}=0\) and \(\delta \circ {\mathfrak {h}}+{\mathfrak {h}}\circ \delta = {{\,\mathrm{id}\,}}-\pi _{0}\). Also, \((d^{\nabla })^{2}=R^\nabla \). Since \({\nabla }\) is torsion-free, we have

$$\begin{aligned}{}[\delta , d^{\nabla }]=\delta \circ d^{\nabla } +d^{\nabla }\circ \delta = 0. \end{aligned}$$

As a result, \((d^{\nabla ^{\lightning }})^{2}=0\) implies that

$$\begin{aligned} \delta \circ A^\nabla + A^\nabla \circ \delta = R^\nabla + d^{\nabla }A^\nabla + \frac{1}{2}[A^\nabla , A^\nabla ]. \end{aligned}$$

By applying the operator \({\mathfrak {h}}\), we get

$$\begin{aligned} A^\nabla = {\mathfrak {h}}\circ \delta \circ A^\nabla = {\mathfrak {h}}\circ \left( R^\nabla +d^{\nabla }A^\nabla + \frac{1}{2}[A^\nabla , A^\nabla ] \right) , \end{aligned}$$

because \( {\mathfrak {h}}\circ A^\nabla =0\) and \(\pi _{0}\circ A^\nabla =0\).

Since \({\mathfrak {h}}\big (\Omega ^2({\widehat{S}}^q(T^\vee _{\mathcal {M}})) \subset \Omega ^{1}({\widehat{S}}^{q+1}(T^\vee _{\mathcal {M}}))\), applying the canonical projections

$$\begin{aligned} \Omega ^{1}({\mathcal {M}},{\hat{S}}(T_{{\mathcal {M}}}^{\vee })\otimes T_{{\mathcal {M}}}) \rightarrow \Omega ^{1}({\mathcal {M}}, S^{n}(T_{{\mathcal {M}}}^{\vee })\otimes T_{{\mathcal {M}}}) \end{aligned}$$

(for each \(n\ge 2\)) to the equality

$$\begin{aligned} A^\nabla = {\mathfrak {h}}\circ \left( R^\nabla +d^{\nabla }A^\nabla + \frac{1}{2}[A^\nabla , A^\nabla ] \right) \in \Omega ^{1}({\mathcal {M}},{\hat{S}}(T_{{\mathcal {M}}}^{\vee })\otimes T_{{\mathcal {M}}}) \end{aligned}$$

yields the relations

$$\begin{aligned} A^\nabla _{2}&={\mathfrak {h}}\circ R^\nabla , \nonumber \\ A^\nabla _{n+1}&={\mathfrak {h}}\circ \left( d^{\nabla }A^\nabla _{n} +\sum _{p+q=n}\frac{1}{2}[A^\nabla _{p}, A^\nabla _{q}] \right) , \quad \forall n\ge 2. \end{aligned}$$
(65)

This completes the proof. \(\square \)

Corollary A.7

Under the same hypothesis as in Theorem A.4, the elements \(A^\nabla _{n}\) with \(n\ge 2\) are completely determined by the curvature \(R^\nabla \) and its higher covariant derivatives. In fact, the element \(A^\nabla _{n}\) is determined by the elements \(A^\nabla _k\) with \(k\le n-1\) by way of the recursive formula (65).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seol, S., Stiénon, M. & Xu, P. Dg Manifolds, Formal Exponential Maps and Homotopy Lie Algebras. Commun. Math. Phys. 391, 33–76 (2022). https://doi.org/10.1007/s00220-021-04265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04265-x

Navigation