Skip to main content
Log in

Q-Manifolds and Mackenzie Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Double Lie algebroids were discovered by Kirill Mackenzie from the study of double Lie groupoids and were defined in terms of rather complicated conditions making use of duality theory for Lie algebroids and double vector bundles. In this paper we establish a simple alternative characterization of double Lie algebroids in a supermanifold language. Namely, we show that a double Lie algebroid in Mackenzie’s sense is equivalent to a double vector bundle endowed with a pair of commuting homological vector fields of appropriate weights. Our approach helps to simplify and elucidate Mackenzie’s original definition; we show how it fits into a bigger picture of equivalent structures on ‘neighbor’ double vector bundles. It also opens ways for extending the theory to multiple Lie algebroids, which we introduce here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courant T.: Tangent Lie algebroids. J. Phys. A 27(13), 4527–4536 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gracia-Saz A., Mackenzie K.C.H.: Duality functors for triple vector bundles. Lett. Math. Phys. 90(1-3), 175–200 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In: Mathematical aspects of classical field theory, Volume 132 of Contemp. Math., Providence, RI: Amer. Math. Soc., 1992, pp. 459–489

  4. Kosmann-Schwarzbach Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41, 153–165 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kosmann-Schwarzbach Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier, Grenoble 46, 1243–1274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Zh.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997)

    MathSciNet  Google Scholar 

  7. Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. I. Adv. Math. 94(2), 180–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. II. Adv. Math. 154(1), 46–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mackenzie, K.C.H.: Double Lie algebroids and the double of a Lie bialgebroid. http://arxiv.org/abs/math/9808081v1 [math.DG], 1998

  10. Mackenzie K.C.H.: Drinfel′d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electron. Res. Announc. Amer. Math. Soc. 4, 74–87 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mackenzie K.C.H.: On symplectic double groupoids and the duality of Poisson groupoids. Internat. J. Math. 10(4), 435–456 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mackenzie, K.C.H.: Notions of double for Lie bialgebroids. http://arxiv.org/abs/math/0011212v1 [math.DG], 2000

  13. Mackenzie, K.C.H.: On certain canonical diffeomorphisms in symplectic and Poisson geometry. In: Quantization, Poisson brackets and beyond. (Manchester, 2001), Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 187–198

  14. Mackenzie, K.C.H.: Duality and triple structures. In: The breadth of symplectic and Poisson geometry, Festschrift in Honor of Alan Weinstein, Volume 232 of Progr. Math., Boston, MA: Birkhäuser Boston, 2005, pp. 455–481

  15. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. Volume 213 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2005

  16. Mackenzie, K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. http://arxiv.org/abs/math/0611799v2 [math.DG], 2006

  17. Mackenzie K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. J. reine angew. Math. 658, 193–245 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Mackenzie K.C.H., Xu P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mackenzie K.C.H., Mokri T.: Locally vacant double Lie groupoids and the integration of matched pairs of Lie algebroids. Geom. Dedicata 77(3), 317–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roger, C.: Algèbres de Lie graduées et quantification. In: Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), Volume 99 of Progr. Math., Boston, MA: Birkhäuser Boston 1991, pp. 374–421

  21. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley, 1999, http://arxiv.org/abs/math/9910078v1 [math.DG], 1999

  22. Tulczyjew, W.M.: A symplectic formulation of particle dynamics. In: Differential Geometric Methods in Mathematical Physics, Bonn 1975, Volume 570 of Lecture Notes in Math.. Berlin: Springer-Verlag, 1977, pp. 457–463

  23. Vaĭntrob A.Yu.: Lie algebroids and homological vector fields. Usp. Matem. Nauk 52(2), 428–429 (1997)

    MATH  Google Scholar 

  24. Voronov, Th.Th.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson Brackets and Beyond. Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 131–168

  25. Voronov, Th.Th.: Mackenzie theory and Q-manifolds. http://arxiv.org/abs/math/0608111v2 [math.DG], 2006

  26. Voronov, Th.Th.: Q-manifolds and Mackenzie theory: an overview. ESI preprint 1952, 2007, http://arxiv.org/abs/0709.4232v1 [math.DG], 2007

  27. Weinstein A.: Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.) 16(1), 101–104 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weinstein A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40(4), 705–727 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Th. Voronov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, T.T. Q-Manifolds and Mackenzie Theory. Commun. Math. Phys. 315, 279–310 (2012). https://doi.org/10.1007/s00220-012-1568-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1568-y

Keywords

Navigation