Skip to main content
Log in

Bargmann–Fock Sheaves on Kähler Manifolds

  • Original research
  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Fedosov used flat sections of the Weyl bundle on a symplectic manifold to construct a star product \(\star \) which gives rise to a deformation quantization. By extending Fedosov’s method, we give an explicit, analytic construction of a sheaf of Bargmann–Fock modules over the Weyl bundle of a Kähler manifold X equipped with a compatible Fedosov abelian connection, and show that the sheaf of flat sections forms a module sheaf over the sheaf of deformation quantization algebras defined \((C^\infty _X[[\hbar ]], \star )\). This sheaf can be viewed as the \(\hbar \)-expansion of \(L^{\otimes k}\) as \(k \rightarrow \infty \), where L is a prequantum line bundle on X and \(\hbar = 1/k\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The inner product on \(H_{x_0}\) is formal because it takes values in \(\mathbb {C}[[\hbar ]]\).

  2. Note that the extension of the Weyl algebra considered in [4] is different from the one here.

References

  1. Baranovsky, V., Ginzburg, V., Kaledin, D., Pecharich, J.: Quantization of line bundles on lagrangian subvarieties. Sel. Math. (N.S.) 22(1), 1–25 (2016)

  2. Bordemann, M., Waldmann, S.: A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41(3), 243–253 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \({\rm gl}(N)\), \(N\rightarrow \infty \) limits. Commun. Math. Phys. 165(2), 281–296 (1994)

    Article  ADS  Google Scholar 

  4. Chan, K., Leung, N., Li, Q.: A geometric construction of representations of the Berezin–Toeplitz quantization. arXiv:2004.00523 [math-QA]

  5. Chan, K., Leung, N., Li, Q.: Kapranov’s \(L_\infty \) structures, Fedosov’s star products, and one-loop exact BV quantizations on Kähler manifolds. arXiv:2008.07057 [math-QA]

  6. Dolgushev, V.A., Lyakhovich, S.L., Sharapov, A.A.: Wick type deformation quantization of Fedosov manifolds. Nuclear Phys. B 606(3), 647–672 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)

    Article  MathSciNet  Google Scholar 

  8. Fedosov, B.V.: Deformation Quantization and Index Theory. Mathematical Topics, vol. 9, p. 325. Akademie Verlag, Berlin (1996)

    MATH  Google Scholar 

  9. Kapranov, M.: Rozansky–Witten invariants via Atiyah classes. Compos. Math. 115(1), 71–113 (1999)

    Article  MathSciNet  Google Scholar 

  10. Karabegov, A.V.: On Fedosov’s approach to deformation quantization with separation of variables. Math. Phys. Stud. 22, 167–176. In: Conférence Moshé Flato 1999, vol. II (Dijon). Kluwer Academic Publishers, Dordrecht (2000)

  11. Ma, X., Marinescu, G.: Berezin–Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Melrose, R.: Star products and local line bundles. Ann. Inst. Fourier (Grenoble) 54(5), 1581–1600 (2004)

    Article  MathSciNet  Google Scholar 

  13. Nest, R., Tsygan, B.: Remarks on modules over deformation quantization algebras. Mosc. Math. J. 4(4), 911–940 (2004)

    Article  MathSciNet  Google Scholar 

  14. Neumaier, N.: Universality of Fedosov’s construction for star products of Wick type on pseudo-Kähler manifolds. Rep. Math. Phys. 52(1), 43–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990)

    Article  Google Scholar 

  16. Tsygan, B.: Oscillatory modules. Lett. Math. Phys. 88(1–3), 343–369 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Si Li and Siye Wu for useful discussions, and the anonymous referees for valuable comments. The first named author thanks Martin Schlichenmaier and Siye Wu for inviting him to attend the conference GEOQUANT 2019 held in September 2019 in Taiwan, in which he had stimulating and very helpful discussions with both of them as well as Jørgen Ellegaard Andersen, Motohico Mulase, Georgiy Sharygin and Steve Zelditch. K. Chan was supported by grants of the Hong Kong Research Grants Council (Project No. CUHK14302617 & CUHK14303019) and direct grants from CUHK. N. C. Leung was supported by grants of the Hong Kong Research Grants Council (Project No. CUHK14301117 & CUHK14303518) and direct grants from CUHK. Q. Li was supported by Guangdong Basic and Applied Basic Research Foundation (Project No. 2020A1515011220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Theorem 2.15

Let \(\Phi := 2\sqrt{-1}\left( -\omega _{i\bar{j}}y^i\bar{y}^j+\Phi _\omega \right) -\Phi _\alpha \). It is clear that

$$\begin{aligned}e^{\Phi /\hbar } := 1+\Phi /\hbar +\frac{1}{2!}(\Phi /\hbar )^2+\cdots \end{aligned}$$

is an invertible section in \(\mathcal {W}_{X,\mathbb {C}}^+\) under the Wick product, and we denote by \(\left( e^{\Phi /\hbar }\right) ^{-1}\) its inverse.

Lemma A.1

Let O be any section of the Weyl bundle. Then we have

$$\begin{aligned} (\nabla ^{0,1}-\delta ^{0,1})\left( e^{\Phi /\hbar }\star O\star (e^{\Phi /\hbar })^{-1}\right) =e^{\Phi /\hbar }\star D_{F,\alpha }^{0,1}(O)\star (e^{\Phi /\hbar })^{-1}. \end{aligned}$$
(A.1)

In other words, the operators \(D_{F,\alpha }^{0,1}\) and \(\nabla ^{0,1}-\delta ^{0,1}\) differ by the gauge action by \(e^{\Phi /\hbar }\).

Proof

We will restrict our attention to the case where \(\alpha =0\); the general case is similar. The operator \(\left( \nabla ^{0,1}-\delta ^{0,1}\right) \) is a derivation with respect to both the classical and quantum product on \(\mathcal {W}_{X,\mathbb {C}}\), there is

$$\begin{aligned}&\left( \nabla ^{0,1}-\delta ^{0,1}\right) e^{\Phi /\hbar }\\&\quad =\frac{1}{\hbar }\left( \nabla ^{0,1}\Phi -\delta ^{0,1}\Phi \right) \cdot e^{\Phi /\hbar }\\&\quad =\frac{1}{\hbar }\sum _{k\ge 2}\left( \nabla ^{0,1}\Phi _{*,k}-\delta ^{0,1}\Phi _{*,k}\right) \cdot e^{\Phi /\hbar }\\&\quad =-\frac{1}{\hbar }(\delta ^{0,1}\Phi _{*,2})\cdot e^{\Phi /\hbar }+\frac{1}{\hbar }\sum _{k\ge 2}\left( \nabla ^{0,1}\Phi _{*,k}-\delta ^{0,1}\Phi _{*,k+1}\right) \cdot e^{\Phi /\hbar }\\&\quad =-\frac{1}{\hbar }e^{\Phi /\hbar }\star \left( \delta ^{0,1}(\Phi _{*,2})\right) +\frac{\sqrt{-1}}{2 \hbar }\omega ^{i\bar{j}}\frac{\partial \Phi }{\partial y^i}\cdot \frac{\partial }{\partial \bar{y}^j}\left( \delta ^{0,1}(\Phi _{*,2})\right) \cdot e^{\Phi /\hbar }\\&\qquad +\frac{1}{\hbar }\sum _{k\ge 2}\left( \nabla ^{0,1}\Phi _{*,k}-\delta ^{0,1}\Phi _{*,k+1}\right) \cdot e^{\Phi /\hbar }\\&\quad =-\frac{1}{\hbar }e^{\Phi /\hbar }\star \left( \delta ^{0,1}(\Phi _{*,2})\right) \\&\qquad +\frac{1}{\hbar }\sum _{k\ge 2}\left( \nabla ^{0,1}\Phi _{*,k}-\delta ^{0,1}\Phi _{*,k+1}+\frac{\sqrt{-1}}{2}\omega ^{i\bar{j}}\frac{\partial \Phi _{*,k}}{\partial y^i}\cdot \frac{\partial }{\partial \bar{y}^j}\left( \delta ^{0,1}(\Phi _{*,2})\right) \cdot e^{\Phi /\hbar }\right) \cdot e^{\Phi /\hbar }\\&\quad =-\frac{1}{\hbar }e^{\Phi /\hbar }\star \left( \delta ^{0,1}(\Phi _{*,2})\right) . \end{aligned}$$

In the last line, we have used the following identity:

$$\begin{aligned} \delta ^{0,1}(\Phi _{m,n+1})=\nabla ^{0,1}(\Phi _{m,n})+\frac{\sqrt{-1}}{2}\omega ^{i\bar{j}}\frac{\partial \Phi }{\partial y^i}\cdot \frac{\partial }{\partial \bar{y}^j}\left( \delta ^{0,1}(\Phi _{*,2})\right) . \end{aligned}$$

Since \(e^{\Phi /\hbar }\star (e^{\Phi /\hbar })^{-1}=1\), it is easy to show that:

$$\begin{aligned} (\nabla ^{0,1}-\delta ^{0,1})(e^{\Phi /\hbar })^{-1}=\frac{1}{\hbar }\delta ^{0,1}(\Phi _{*,2})\star (e^{\Phi /\hbar })^{-1}. \end{aligned}$$

Using the fact that \(\nabla ^{0,1}-\delta ^{0,1}\) is a derivation with respect to \(\star \), we have

$$\begin{aligned}&(\nabla ^{0,1}-\delta ^{0,1})\left( e^{\Phi /\hbar }\star O\star (e^{\Phi /\hbar })^{-1}\right) \\&\quad =e^{\Phi /\hbar }\star \left( -\frac{1}{\hbar }\delta ^{0,1}(\Phi _{*,2})\right) \star O\star (e^{\Phi /\hbar })^{-1}+e^{\Phi /\hbar }\star (\nabla ^{0,1}O-\delta ^{0,1}O)\star (e^{\Phi /\hbar })^{-1}\\&\qquad + e^{\Phi /\hbar }\star O\star \frac{1}{\hbar }(\delta ^{0,1}(\Phi _{*,2})) \star (e^{\Phi /\hbar })^{-1}\\&\quad =e^{\Phi /\hbar }\star \left( \nabla ^{0,1}O-\delta ^{0,1}O+\frac{1}{\hbar }[-\delta ^{0,1}(\Phi _{*,2}), O]_{\star }\right) \star (e^{\Phi /\hbar })^{-1}\\&\quad =e^{\Phi /\hbar }\star D_{F,\alpha }^{0,1}(O)\star (e^{\Phi /\hbar })^{-1}. \end{aligned}$$

In the last line, we have used Eq. (2.6) to obtain:

$$\begin{aligned} -\delta ^{0,1}(\Phi _{n,2})=-2\sqrt{-1}\cdot \delta ^{0,1}(\Phi _\omega )_{n,2}=-2\sqrt{-1}\frac{\sqrt{-1}}{2}I_n=I_n. \end{aligned}$$

\(\square \)

Proposition A.2

Let O be any section of the Weyl bundle \(\mathcal {W}_{X,\mathbb {C}}\), and let \(O_q\) (q for quantization) be the unique solution of the following equation:

$$\begin{aligned} O\cdot e^{\Phi /\hbar }=e^{\Phi /\hbar }\star O_q. \end{aligned}$$

Here \(\Phi \) is the same as the previous part. Then there is the following identity describing an explicit relation between the classical and quantum (Fedosov) connections:

$$\begin{aligned} D_C(A)\cdot e^{\Phi /\hbar }=e^{\Phi /\hbar }\star D_{F,\alpha }(A_q). \end{aligned}$$
(A.2)

Proof

Let A and B be sections of \(\mathcal {W}_X\) and \(\overline{\mathcal {W}}_X\) respectively, then so are the \(D_C(A)\) and \(D_C(B)\) as the classical connection \(D_C\) does not change the type in \(\mathcal {W}_{X,\mathbb {C}}\). For A, there is \(A_q=A\) by type reason, and there is

$$\begin{aligned} D_C(A)\cdot e^{\Phi /\hbar }=e^{\Phi /\hbar }\star D_C(A_q)=e^{\Phi /\hbar }\star D_{F,\alpha }(A_q). \end{aligned}$$

The last equality follows from the fact that the Fedosov connection \(D_{F,\alpha }\) equals \(D_C\) when restricted to \(\mathcal {W}_X\). For B, there is

$$\begin{aligned} B\star e^{\Phi /\hbar }=B\cdot e^{\Phi /\hbar }=e^{\Phi /\hbar }\star B_q. \end{aligned}$$

By Lemma A.1, there is

$$\begin{aligned} D_C^{0,1}(B)&=(\nabla ^{0,1}-\delta ^{0,1})(B)=(\nabla ^{0,1}-\delta ^{0,1})\left( e^{\Phi /\hbar }\star B_q\star (e^{\Phi /\hbar })^{-1}\right) \\&=e^{\Phi /\hbar }\star D_{F,\alpha }^{0,1}(B_q)\star (e^{\Phi /\hbar })^{-1}. \end{aligned}$$

In a similar fashion, we can show that \(D_C^{1,0}(B)=e^{\Phi /\hbar }\star D_{F,\alpha }^{1,0}(B_q)\star (e^{\Phi /\hbar })^{-1}\). A general monomial of \(\mathcal {W}_{X,\mathbb {C}}\) must be a sum of the forms \(A\cdot B\). We first have the following:

$$\begin{aligned} (A\cdot B)\cdot e^{\Phi /\hbar }&= A\cdot \left( B\cdot e^{\Phi /\hbar }\right) =A\cdot \left( e^{\Phi /\hbar }\star B_q\right) = e^{\Phi /\hbar }\star \left( B_q\star A\right) , \end{aligned}$$

which implies that \((A\cdot B)_q=B_q\star A\). And there is

$$\begin{aligned} D_C(A\cdot B)\cdot e^{\Phi /\hbar }&= (D_C(A)\cdot B+A\cdot D_C(B))\cdot e^{\Phi /\hbar }\\&= D_C(A)\cdot B\cdot e^{\Phi /\hbar }+A\cdot D_C(B)\cdot e^{\Phi /\hbar }\\&= D_C(A)\cdot (e^{\Phi /\hbar }\star B_q)+A\cdot (e^{\Phi /\hbar }\star D_{F,\alpha }(B_q))\\&= (e^{\Phi /\hbar }\star B_q)\star D_C(A)+A\cdot (e^{\Phi /\hbar }\star D_{F,\alpha }(B_q))\\&= (e^{\Phi /\hbar }\star B_q)\star D_{F,\alpha }(A)+(e^{\Phi /\hbar }\star D_{F,\alpha }(B_q))\star A\\&= e^{\Phi /\hbar }\star (B_q\star D_{F,\alpha }(A)+D_{F,\alpha }(B_q)\star A)\\&= e^{\Phi /\hbar }\star D_{F,\alpha }(B_q\star A)\\&= e^{\Phi /\hbar }\star D_{F,\alpha }(A\cdot B)_q. \end{aligned}$$

\(\square \)

This proposition reduces the proof of Theorem 2.15 to showing that \(\sigma (O_f)=f\). This follows the definition of \(O_f\) and the fact that the section of \(\Phi \) does not contain any non-trivial purely holomorphic or anti-holomorphic components. Thus we complete the proof of Theorem 2.15.

Appendix B. Proof of Theorem 4.4

Using Lemma 3.11 and the fact that \(D_{F,\alpha }|_{\mathcal {W}_X}=D_K\), we have

$$\begin{aligned} D_{B,\alpha }(A\cdot e^{\beta /\hbar }\otimes e_{x_0})&= D_{B,\alpha }(A\circledast e^{\beta /\hbar }\otimes e_{x_0})\\&= D_{F,\alpha }(A)\circledast (e^{\beta /\hbar }\otimes e_{x_0})+A\circledast D_{B,\alpha }(e^{\beta /\hbar }\otimes e_{x_0})\\&= D_K(A)\cdot (e^{\beta /\hbar }\otimes e_{x_0})+A\circledast D_{B,\alpha }(e^{\beta /\hbar }\otimes e_{x_0}). \end{aligned}$$

Hence, to prove the theorem, we only need to show that \(D_{B,\alpha }(e^{\beta /\hbar }\otimes e_{x_0})=0\). We first recall that \(\alpha =-\hbar \cdot R_{i\bar{j}k}^kdz^i\wedge d\bar{z}^j\).

Lemma B.1

We have \( (J_\alpha )_n=-(n+1)\hbar \cdot R_{ii_1\ldots i_{n},\bar{l}}^id\bar{z}^l\otimes y^{i_1}\ldots y^{i_n} \)

Proof

The proof is by induction on n. For \(n=1\), we have

$$\begin{aligned} (J_\alpha )_1=(\delta ^{1,0})^{-1}\left( -\hbar \cdot R_{i\bar{j}k}^kdz^i\wedge d\bar{z}^j\right) =-2\hbar \cdot \left( \frac{1}{2} R_{i\bar{j}k}^kd\bar{z}^j\otimes y^i\right) . \end{aligned}$$

Then by the induction hypothesis for \(n-1\), we have

$$\begin{aligned} \nabla ^{1,0}(J_\alpha )_{n-1}&=\nabla ^{1,0}\left( -n\hbar \cdot R_{ii_1\ldots i_{n-1},\bar{l}}^id\bar{z}^l\otimes y^{i_1}\ldots y^{i_{n-1}}\right) . \end{aligned}$$

On the other hand,

$$\begin{aligned}&\nabla ^{1,0}\left( n\hbar \cdot R_{i_1\ldots i_{n},\bar{l}}^jd\bar{z}^l\otimes y^{i_1}\ldots y^{i_{n}}\otimes \partial _{y^j}\right) \\&\quad =(n+1)\cdot n\hbar \cdot R_{i_1\ldots i_{n+1},\bar{l}}^jdz^{i_{n+1}}\wedge d\bar{z}^l\otimes y^{i_1}\ldots y^{i_n}\otimes \partial _{y^j}. \end{aligned}$$

Since \(\nabla ^{1,0}\) is compatible between the contraction between TX and \(T^*X\), the above computation shows that

$$\begin{aligned} (J_\alpha )_n=(\delta ^{1,0})^{-1}(\nabla ^{1,0}(J_\alpha )_{n-1})=-(n+1)\hbar \cdot R_{i_1\ldots i_{n+1},\bar{l}}^{i_1} d\bar{z}^l\otimes y^{i_1}\ldots y^{i_n}y^{i_{n+1}}. \end{aligned}$$

\(\square \)

Lemma B.2

The section \(\beta \) satisfies \( D_K(\beta )=2\sqrt{-1}\omega _{i\bar{j}}d\bar{z}^j\otimes y^i-\partial \rho . \)

Proof

The function \(\rho \) satisfies the condition that \(\partial \bar{\partial }(\rho )=-2\sqrt{-1}\omega \). Recall that \(\beta =\sum _{k\ge 1}(\tilde{\nabla }^{1,0})^k(\rho )\). A straightforward computation shows that

$$\begin{aligned} D_K(\beta )&=(-\delta ^{1,0}+\bar{\partial })(\tilde{\nabla }^{1,0}\rho )=-\partial \rho +\bar{\partial }\circ (\delta ^{1,0})^{-1}(\nabla ^{1,0}\rho )\\&=-\partial \rho +(\delta ^{1,0})^{-1}(\bar{\partial }\partial \rho )=2\sqrt{-1}\omega _{i\bar{j}}d\bar{z}^j\otimes y^i-\partial \rho . \end{aligned}$$

\(\square \)

We also have the following:

$$\begin{aligned}&\frac{1}{\hbar }I_n\circledast (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =-2\sqrt{-1}\cdot R_{i_1\ldots i_n,\bar{l}}^j\omega _{j\bar{k}}d\bar{z}^l\otimes (y^{i_1}\ldots y^{i_n}\bar{y}^k)\circledast (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =-2\sqrt{-1}\cdot R_{i_1\ldots i_n,\bar{l}}^j\omega _{j\bar{k}}d\bar{z}^l\otimes \left( \frac{\omega ^{i\bar{k}}}{2\sqrt{-1}}\frac{\partial }{\partial y^i}\right) (y^{i_1}\ldots y^{i_n}e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =R_{i_1\ldots i_n,\bar{l}}^id\bar{z}^l\otimes y^1\ldots y^n\frac{\partial (\beta /\hbar ))}{\partial y^i}\cdot (e^{\beta /\hbar }\otimes e_{x_0})+n\cdot R_{ii_1\ldots i_{n-1},\bar{l}}^id\bar{z}^l\otimes y^{i_1}\ldots y^{i_{n-1}}\cdot (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =\tilde{R}_n^*(\beta /\hbar )+n\cdot R_{ii_1\ldots i_{n-1},\bar{l}}^id\bar{z}^l\otimes y^{i_1}\ldots y^{i_{n-1}}\cdot (e^{\beta /\hbar }\otimes e_{x_0}). \end{aligned}$$

Summarizing the above computations, we have

$$\begin{aligned}&D_{B,\alpha }(e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =\left( \nabla +\frac{1}{\hbar }\gamma _\alpha \circledast \right) (e^{\beta /\hbar }\otimes e_{x_0})+e^{\beta /\hbar }\otimes \nabla _{L_{\omega /\hbar }}e_{x_0}\\&\quad =\left( \nabla (\beta /\hbar )+\frac{2\sqrt{-1}}{\hbar }\omega _{i\bar{j}}(dz^i\otimes \bar{y}^i-d\bar{z}^j\otimes y^i)\circledast +\frac{1}{\hbar }(I+J_\alpha )\circledast \right) (e^{\beta /\hbar }\otimes e_{x_0})\\&\qquad +e^{\beta /\hbar }\otimes \nabla _{L_{\omega /\hbar }}e_{x_0}\\&\quad =\left( \nabla (\beta /\hbar )-\frac{2\sqrt{-1}}{\hbar }\omega _{i\bar{j}}d\bar{z}^j\otimes y^i+\frac{1}{\hbar }\partial \rho \right) (e^{\beta /\hbar }\otimes e_{x_0})\\&\qquad +\frac{1}{\hbar }(2\sqrt{-1}\omega _{i\bar{j}}dz^i\otimes \bar{y}^j+I+J_\alpha )\circledast (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =\left( \nabla (\beta /\hbar )+\sum _{n\ge 2}\tilde{R}_n^*(\beta /\hbar )-\frac{2\sqrt{-1}}{\hbar }\omega _{i\bar{j}}d\bar{z}^j\otimes y^i+\frac{1}{\hbar }\partial \rho +2\sqrt{-1}\omega _{i\bar{j}}dz^i\frac{\omega ^{k\bar{j}}}{2\sqrt{-1}}\frac{\partial (\beta /\hbar )}{\partial y^k}\right) \\&\qquad (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =\left( \nabla (\beta /\hbar )+\sum _{n\ge 2}\tilde{R}_n^*(\beta /\hbar )-\frac{2\sqrt{-1}}{\hbar }\omega _{i\bar{j}}d\bar{z}^j\otimes y^i+\frac{1}{\hbar }\partial \rho -\delta ^{1,0}(\beta /\hbar )\right) (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =\frac{1}{\hbar }\left( D_K(\beta )-2\sqrt{-1}\omega _{i\bar{j}}d\bar{z}^j\otimes y^i+\partial \rho \right) (e^{\beta /\hbar }\otimes e_{x_0})\\&\quad =0. \end{aligned}$$

This completes the proof of Theorem 4.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K., Conan Leung, N. & Li, Q. Bargmann–Fock Sheaves on Kähler Manifolds. Commun. Math. Phys. 388, 1297–1322 (2021). https://doi.org/10.1007/s00220-021-04251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04251-3

Navigation