Skip to main content
Log in

Density Functional Theory for Two-Dimensional Homogeneous Materials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study Density Functional Theory models for systems which are translationally invariant in some directions, such as a homogeneous 2-d slab in the 3-d space. We show how the different terms of the energy are modified and we derive reduced equations in the remaining directions. In the Thomas–Fermi model, we prove that there is perfect screening, and provide decay estimates for the electronic density away from the slab. In Kohn–Sham models, we prove that the Pauli principle is replaced by a penalization term in the energy. In the reduced Hartree–Fock model in particular, we prove that the resulting model is well-posed, and give some properties of the minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agmon, S.: Lectures in exponential decay of solutions of second–order elliptic equations: bounds on eigenfunctions of N–body Schrödinger operators, volume 29 of Princeton Mathematical Notes. Princeton Univerity Press (1982)

  2. Blanc, X., Le Bris, C.: Thomas-Fermi type theories for polymers and thin films. Adv. Differ. Equ. 5(7–9), 977–1032 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Cancès, É., Cao, L., Stoltz, G.: A reduced Hartree–Fock model of slice-like defects in the Fermi sea. Nonlinearity 33(01), 156–195 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  4. Cao, L.: Mean field stability for the junction of quasi 1d systems with Coulomb interactions (2019). arXiv preprint arXiv: 1903.01127

  5. Catto, I., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models. Oxford University Press (1998)

  6. Catto, I., Le Bris, C., Lions, P.-L.: On some periodic Hartree-type models for crystals. Ann. Inst. H. Poincaré (C) 19(2), 143–190 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Chadan, K., Khuri, N.N., Martin, A., Tsun Wu, T.: Bound states in one and two spatial dimensions. J. Math. Phys. 44(2), 406–422 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. Fefferman, C.: The thermodynamic limit for a crystal. Commun. Math. Phys. 98(3), 289–311 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  9. Fermi, E.: Un metodo statistico per la determinazione di alcune proprietá dell’atome. Rend. Accad. Naz. Lincei 6(602–607), 32 (1927)

  10. Frank, R.L., Gontier, D., Lewin, M.: The nonlinear Schrödinger equation for orthonormal functions II: application to Lieb-Thirring inequalities. Commun. Math. Phys. 384, 1783–1828 (2021).

  11. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  12. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  13. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  14. Levy, M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A. 76(12), 6062–6065 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  15. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24(3), 243–277 (1983)

    Article  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis, volume 14. American Mathematical Soc (2001)

  17. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  18. Lieb, E.H., Thirring, W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  ADS  Google Scholar 

  19. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, pp. 269–303. Studies in Mathematical Physics. Princeton University Press (1976)

  20. Martin, A.: New results on the moments of the eigenvalues of the Schrödinger Hamiltonian and applications. Commun. Math. Phys. 129(1), 161–168 (1990)

    Article  ADS  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Analysis of Operators, vol. IV. Academic Press (1978)

  22. Solovej, J.Ph.: The ionization conjecture in Hartree-Fock theory. Ann. Math., 509–576 (2003)

  23. Sommerfeld, A.: Asymptotische integration der differentialgleichung des Thomas–Fermischen atoms. Zeitschrift für Physik 78(5–6), 283–308 (1932)

    Article  ADS  Google Scholar 

  24. Thomas, L.H.: The calculation of atomic fields. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542–548. Cambridge University Press (1927)

  25. von Weizsäcker, C.F.: Zur theorie der kernmassen. Zeitschrift für Physik 96(7–8), 431–458 (1935)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has received fundings from a CNRS international cooperation program (Projet International de Collaboration Scientifique, or PICS, of D.G. and S.L.). The research leading to these results has received funding from OCP grant AS70 “Towards phosphorene based materials and devices”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gontier.

Additional information

Communicated by A. Giuliani.

© 2021 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Appendix A. A Lieb–Thirring Inequality

Appendix A. A Lieb–Thirring Inequality

In this section, we explain how to use Theorem 2.6 to obtain a Lieb–Thirring type inequality [18, 19]. We state our result in the general dimension \(d\in \mathbb {N}\setminus \left\{ 0\right\} \).

Proposition A.1

Let \(d\in \mathbb {N}\setminus \left\{ 0\right\} \) and \(G\in {{\mathcal {S}}}(L^2(\mathbb {R}^d))\) be a positive operator. Then, for any \(s\in \mathbb {N}\setminus \left\{ 0\right\} \),

(35)

with the constant

$$\begin{aligned} K := \dfrac{ K_\mathrm{LT}(d+s)^{1 + \frac{s}{d}} }{ ( 2c_{\mathrm{TF}}(s))^{\frac{s}{d}} } \left( \dfrac{s}{d+s} \right) ^{s/d} \dfrac{d}{d+s}. \end{aligned}$$

Here, \(K_\mathrm{LT}(d+s)\) is the usual Lieb–Thirring constant in dimension \(d+s\), that is the best constant in the inequality

$$\begin{aligned} \forall \gamma \in {{\mathcal {S}}}\left( L^2(\mathbb {R}^{d+s})\right) , \quad 0 \le \gamma \le 1, \quad K_\mathrm{LT}(d+s) \int _{\mathbb {R}^{d+s}} \rho _\gamma ^{1 + \frac{2}{d+s}} \le \mathrm{Tr}_{d+s}( - \Delta \gamma ).\nonumber \\ \end{aligned}$$
(36)

Proof

Consider \(G \in {{\mathcal {S}}}(L^2(\mathbb {R}^d))\) , \(G \ge 0\) such that \(\mathrm{Tr}(G^{1 + \frac{2}{s}}) < \infty \) and consider the optimal \(\gamma \in {{\mathcal {S}}}(L^2(\mathbb {R}^{d+s}))\) as in (30). Then, the Lieb–Thirring inequality (36) applied to \(\gamma \) gives (after the appropriate per unit surface normalization)

$$\begin{aligned} \frac{1}{2} \mathrm{Tr}_d(- \Delta _d G) + c_{\mathrm{TF}}(s) \mathrm{Tr}_d(G^{1 + \frac{2}{s}}) = \frac{1}{2} \underline{\mathrm{Tr}}_{d+s}(- \Delta _{d+s} \gamma ) \ge \frac{1}{2} K_\mathrm{LT}(d+s) \int _{\mathbb {R}^d} \rho _\gamma ^{1 + \frac{2}{d+s}}, \end{aligned}$$

Since \(\rho _\gamma = \rho _G\) then, for all \(G \in {{\mathfrak {S}}}_{1 + \frac{2}{s}}(\mathbb {R}^d)\) such that \(\mathrm{Tr}(- \Delta G) < \infty \), we get \(\rho _G \in L^{1 + \frac{2}{d+s}}(\mathbb {R}^d)\), and

$$\begin{aligned} \mathrm{Tr}_d(- \Delta _d G) + 2 c_{\mathrm{TF}}(s) \mathrm{Tr}_d(G^{1 + \frac{2}{s}}) \ge K_\mathrm{LT}(d+s) \int _{\mathbb {R}^d} \rho _G^{1 + \frac{2}{d+s}}. \end{aligned}$$

Performing the scaling \(G_{\lambda } = \lambda G\) and optimizing over \(\lambda \) gives the result. \(\square \)

Proposition A.1 corresponds to the Lieb-Thirring inequality for operators in \({{\mathcal {S}}}(L^2(\mathbb {R}^{s+d}))\) in a semi-classical limit, when the semi-classical limit dilation is only performed in the first s variables (see also [20] for similar arguments).

This type of inequalities was recently studied in [10], where it is shown that for all \(d \ge 0\) and \(1 \le p \le 1 + \frac{2}{d}\), there is an optimal constant \(K_{p,d}\) so that

$$\begin{aligned} K_{p,d} \Vert \rho _G \Vert _p^{\frac{2p}{d(p-1)}} \le \Vert G \Vert _{{{\mathfrak {S}}}^{q}}^{\frac{p(2-d) + d}{d(p-1)}} \mathrm{Tr}_d (- \Delta _d G), \quad \text {with} \quad q := \dfrac{2p + d - dp}{2 + d - dp}. \end{aligned}$$

It is proved that this constant is the dual constant of the usual Lieb–Thirring constant \(L_{\gamma , d}\)with \(\gamma =q/(q-1)\). The case in Proposition A.1 corresponds to the choice

$$\begin{aligned} p = 1 + \dfrac{2}{d+s} \quad \text {with} \quad s \in \mathbb {N}, \quad \text {so that} \quad q = 1 + \frac{2}{s}. \end{aligned}$$

This corresponds to the dual constant \(L_{\gamma , d}\) with \(\gamma = \frac{q}{q-1} = 1 + \frac{s}{2}\). In particular, since \(s \ge 1\), we have \(\gamma \ge \frac{3}{2}\). In this regime, it is known that the best constant is the semi-classical one: \(L_{\gamma , d} = L_{\gamma , d}^\mathrm{sc}\), hence \(K_{p,d} = K_{p, d}^\mathrm{sc}\). This proves that the optimal constant K in the inequality (35) is the semi-classical one. In particular, we have

$$\begin{aligned} \frac{1}{2} \mathrm{Tr}_d(- \Delta _d G) + c_{\mathrm{TF}}(s) \mathrm{Tr}_d(G^{1 + \frac{2}{s}}) \ge c_\mathrm{TF}(d+s) \int _{\mathbb {R}^d} \rho _G^{1 + \frac{2}{d+s}}. \end{aligned}$$

In other words, the energy in the rHF model is always greater than the energy in the TF model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontier, D., Lahbabi, S. & Maichine, A. Density Functional Theory for Two-Dimensional Homogeneous Materials. Commun. Math. Phys. 388, 1475–1505 (2021). https://doi.org/10.1007/s00220-021-04240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04240-6

Navigation