Skip to main content
Log in

Sharp Estimates of Noncommutative Bochner–Riesz Means on Two-Dimensional Quantum Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we establish the full \(L_p\) boundedness of noncommutative Bochner–Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in Chen et al. (Commun Math Phys 322(3):755–805, 2013) in the sense of the \(L_p\) convergence for two dimensions. The main ingredients are sharp estimates of noncommutative Kakeya maximal functions and geometric estimates in the plane. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner–Riesz means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bochner, S.: Summation of multiple Fourier series by spherical means. Trans. Am. Math. Soc. 40(2), 175–207 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal. 9(2), 256–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cadilhac, L.: Weak boundedness of Calderón–Zygmund operators on noncommutative \(L_1\)-spaces. J. Funct. Anal. 274(3), 769–796 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carbery, A.: The boundedness of the maximal Bochner–Riesz operator on \(L^{4}({ R}^{2})\). Duke Math. J. 50(2), 409–416 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Xu, Q., Yin, Z.: Harmonic analysis on quantum tori. Commun. Math. Phys. 322(3), 755–805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego, CA (1994)

    MATH  Google Scholar 

  9. Córdoba, A.: The Kakeya maximal function and the spherical summation multipliers. Am. J. Math. 99(1), 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Córdoba, A.: A note on Bochner–Riesz operators. Duke Math. J. 46(3), 505–511 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davidson, K.R.: \(C^*\)-algebras by Example, Fields Institute Monographs, vol. 6. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  12. de Leeuw, K.: On \(L_{p}\) multipliers. Ann. Math. (2) 81, 364–379 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Demeter, C.: Fourier Restriction, Decoupling, and Applications. Cambridge Studies in Advanced Mathematics, vol. 184. Cambridge University Press, Cambridge (2020)

    Book  MATH  Google Scholar 

  14. Fefferman, C.: A note on spherical summation multipliers. Israel J. Math. 15, 44–52 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. González-Pérez, A., Junge, M., Parcet, J.: Singular integrals in quantum euclidean spaces, Mem. Amer. Math. Soc. To appear. arXiv: 1705.01081

  16. González-Pérez, A., Junge, M., Parcet, J.: Smooth Fourier multipliers in group algebras via Sobolev dimension. Ann. Sci. Éc. Norm. Supér. (4) 50(4), 879–925 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L.: Classical Fourier analysis, Third ed., Graduate Texts in Mathematics, vol. 249, Springer, New York (2014)

  18. Grafakos, L.: Modern Fourier analysis, Third ed., Graduate Texts in Mathematics, vol. 250, Springer, New York (2014)

  19. Guth, L., Hickman, J., Iliopoulou, M.: Sharp estimates for oscillatory integral operators via polynomial partitioning. Acta Math. 223(2), 251–376 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herz, C.S.: On the mean inversion of Fourier and Hankel transforms. Proc. Natl. Acad. Sci. U.S.A. 40, 996–999 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hong, G., Lai, X., Xu, B.: Maximal singular integral operators acting on noncommutative \(L_p\)-spaces. arXiv:2009.03827

  22. Hong, G., Liao, B., Wang, S.: Noncommutative maximal ergodic inequalities associated with doubling conditions. Duke Math. J. 170(2), 205–246 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, G., Wang, S., Wang, X.: Pointwise convergence of noncommutative Fourier series. arXiv:1908.00240

  24. Hörmander, L.: Oscillatory integrals and multipliers on \(FL^{p}\). Ark. Mat. 11, 1–11 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hytönen, T.P., Torrea, J.L., Yakubovich, D.V.: The Littlewood-Paley-Rubio de Francia property of a Banach space for the case of equal intervals. Proc. R. Soc. Edinb. Sect. A 139(4), 819–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Junge, M.: Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549, 149–190 (2002)

  27. Junge, M., Mei, T., Parcet, J.: Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal. 24(6), 1913–1980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Junge, M., Mei, T., Parcet, J.: Noncommutative Riesz transforms–dimension free bounds and Fourier multipliers. J. Eur. Math. Soc. 20(3), 529–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Junge, M., Rezvani, S., Zeng, Q.: Harmonic analysis approach to Gromov–Hausdorff convergence for noncommutative tori. Commun. Math. Phys. 358(3), 919–994 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. J. Am. Math. Soc. 20(2), 385–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, S.: Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators. Duke Math. J. 122(1), 205–232 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lee, S.: Square function estimates for the Bochner–Riesz means. Anal. PDE 11(6), 1535–1586 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, X., Wu, S.: New estimates of the maximal Bochner–Riesz operator in the plane. Math. Ann. 378(3–4), 873–890 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. McDonald, E., Sukochev, F., Xiong, X.: Quantum differentiability on quantum tori. Commun. Math. Phys. 371(3), 1231–1260 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. McDonald, E., Sukochev, F., Xiong, X.: Quantum differentiability on noncommutative Euclidean spaces. Commun. Math. Phys. 379(2), 491–542 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mei, T.: Operator valued Hardy spaces. Mem. Am. Math. Soc. 188(881), vi+64 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Mei, T., de la Salle, M.: Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups. Trans. Am. Math. Soc. 369(8), 5601–5622 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mei, T., Parcet, J.: Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities. Int. Math. Res. Not. IMRN 8, 1433–1487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nagel, A., Stein, E.M., Wainger, S.: Differentiation in Lacunary directions. Proc. Natl. Acad. Sci. U.S.A. 75(3), 1060–1062 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Parcet, J.: Pseudo-localization of singular integrals and noncommutative Calderón–Zygmund theory. J. Funct. Anal. 256(2), 509–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pisier, G.: Non-commutative vector valued \(L_p\)-spaces and completely \(p\)-summing maps, Astérisque. No. 247, vi+131 (1998)

  42. Pisier, G., Xu, Q.: Non-commutative \(L^p\)-spaces, Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)

    MATH  Google Scholar 

  43. Ricard, É.: \(L_p\)-multipliers on quantum tori. J. Funct. Anal. 270(12), 4604–4613 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rieffel, M.A.: Noncommutative Tori—A Case Study of Noncommutative Differentiable Manifolds. Contemp. Math., vol. 105, pp. 191–211. American Mathematical Society, Providence, RI (1990)

    Google Scholar 

  45. Spera, M.: Sobolev theory for noncommutative tori. Rend. Sem. Mat. Univ. Padova 86(1991), 143–156 (1992)

    MathSciNet  MATH  Google Scholar 

  46. Stein, E.M.: Localization and summability of multiple Fourier series. Acta Math. 100, 93–147 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  48. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ (1971)

    MATH  Google Scholar 

  49. Strömberg, J.O.: Maximal functions associated to rectangles with uniformly distributed directions. Ann. Math. (2) 107(2), 399–402 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tao, T.: The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J. 96(2), 363–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tao, T.: On the maximal Bochner–Riesz conjecture in the plane for \(p<2\). Trans. Am. Math. Soc. 354(5), 1947–1959 (2002)

  52. Tao, T., Vargas, A.: A bilinear approach to cone multipliers. I. Restriction estimates. Geom. Funct. Anal. 10(1), 185–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11(4), 967–1000 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Várilly, J.C.: An Introduction to Noncommutative Geometry. EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich (2006)

    Book  MATH  Google Scholar 

  55. Wainger, S.: Applications of Fourier transforms to averages over lower-dimensional sets, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., pp. 85–94 (1979)

  56. Weaver, N.: Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal. 139(2), 261–300 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Weaver, N.: Mathematical Quantization. Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL (2001)

    Book  MATH  Google Scholar 

  58. Wolff, T.H.: An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoam. 11(3), 651–674 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Weaver, N.: Recent Work Connected with the Kakeya Problem. Prospects in mathematics (Princeton, NJ, 1996), pp. 129–162. Amer. Math. Soc, Providence, RI (1999)

    MATH  Google Scholar 

  60. Xia, R., Xiong, X., Xu, Q.: Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori. Adv. Math. 291, 183–227 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Xiong, X., Xu, Q., Yin, Z.: Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. Mem. Am. Math. Soc. 252(1203), vi+118 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Xu, Q.: Noncommutative \({L}_p\)-spaces and Martingale inequalities, Book manuscript (2007)

Download references

Acknowledgements

The author would like to thank Guixiang Hong for some helpful suggestions when preparing this paper and the referees for their very careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Lai.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (No. 11801118, No. 12071098) and China Postdoctoral Science Foundation (No. 2017M621253, No. 2018T110279).

Appendix A. Interpolation of Analytic Families of Operators on Noncommutative \(L_p\) Spaces

Appendix A. Interpolation of Analytic Families of Operators on Noncommutative \(L_p\) Spaces

In this appendix, we state precisely an analytic interpolation theorem which may be known to experts. Let \({\mathcal {S}}\) be the linear span of all \(x\in {{\mathcal {M}}}_{+}\) whose support projections have finite trace. Suppose that \(T_z\) is a linear operator mapping \({\mathcal {S}}\) to itself for every z in the closed strip \({\bar{S}}=\{z\in {{\mathbb {C}}}:0\le \text {Re} z\le 1\}\). We say the family \(\{T_z\}_z\) is analytic if the function

$$\begin{aligned} z\rightarrow \tau (gT_z(f)) \end{aligned}$$

is analytic in the open strip \(S=\{z\in {{\mathbb {C}}}:0<\text {Re}z<1\}\) and continuous on \({\bar{S}}\) for any functions f and g in \({\mathcal {S}}\). Moreover we say the analytic family \(\{T_z\}_z\) is of admissible growth if there exists a constant \(0<a<\pi \) such that

$$\begin{aligned} e^{-a|\text {Im}z|}\log |\tau (gT_z(f))|<\infty \end{aligned}$$

for all \(z\in {\bar{S}}\). Now we can state the following analytic interpolation theorem.

Theorem 1

Suppose that \(T_z\) is an analytic family of linear operators of admissible growth. Let \(p_0,p_1,q_0,q_1\in (0,\infty )\) and assume that \(M_0,M_1\) are positive functions on \({{\mathbb {R}}}\) such that

$$\begin{aligned} \sup _{y\in {{\mathbb {R}}}}e^{-b|y|}\log M_j(y)<\infty \end{aligned}$$
(A.1)

for \(j=0,1\) and some \(b\in (0,\pi )\). Let \(p,\theta \) satisfy \(\frac{1}{p}=\frac{1-\theta }{p_0}+\frac{\theta }{p_1}\) and \(\frac{1}{q}=\frac{1-\theta }{q_0}+\frac{\theta }{q_1}\). Suppose that

$$\begin{aligned} \begin{aligned} \Vert T_{iy}(f)\Vert _{L_{q_0}({{\mathcal {M}}})}&\le M_0(y)\Vert f\Vert _{L_{p_0}({{\mathcal {M}}})},\quad \Vert T_{1+iy}(f)\Vert _{L_{q_1}({{\mathcal {M}}})}\le M_1(y)\Vert f\Vert _{L_{p_1}({{\mathcal {M}}})} \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

hold for all \(f\in {\mathcal {S}}\). Then for any \(\theta \in (0,1)\), we have

$$\begin{aligned} \Vert T_{\theta }(f)\Vert _{L_q({{\mathcal {M}}})}\le M(\theta )\Vert f\Vert _{L_p({{\mathcal {M}}})}, \end{aligned}$$

where for \(0<t<1\),

$$\begin{aligned} M(t)=\exp \Big \{\frac{\sin (\pi t)}{2}\int _{-\infty }^{\infty }\Big [\frac{\log M_0(y)}{\cosh (\pi y)-\cos (\pi t)}+\frac{\log M_1(y)}{\cosh (\pi y)+\cos (\pi t)}\Big ]dy\Big \}. \end{aligned}$$

To prove this theorem, we need an extension of the three lines theorem which could be found in [48, Page 206, Lemma 4.2].

Lemma A.2

Suppose that F is analytic on the open strip S and continuous on its closure such that

$$\begin{aligned} \sup _{z\in {\bar{S}}}e^{-a|\text {Im}z|}\log |F(z)|<\infty \end{aligned}$$

for some \(a\in (0,\pi )\). Then for any \(0<x<1\), we have

$$\begin{aligned} |F(x)|\le \exp \Big \{\frac{\sin (\pi x)}{2}\int _{-\infty }^{\infty }\Big [\frac{\log |F(iy)|}{\cosh (\pi y)-\cos (\pi x)}+\frac{\log |F(1+iy)|}{\cosh (\pi y)+\cos (\pi x)}\Big ]dy\Big \}. \end{aligned}$$

Proof of Theorem 1

The proof is quite similar to that in the commutative case. Let \(f,g\in {\mathcal {S}}\) with polar decompositions \(f=u|f|\) and \(g=v|g|\). Without loss of generality, we may suppose that \(\Vert f\Vert _{L_p({{\mathcal {M}}})}=1=\Vert g\Vert _{L_{q'}({{\mathcal {M}}})}\). By the duality, to prove our theorem, it suffices to show

$$\begin{aligned} |\tau (gT_{\theta }(f))|\le M({\theta }). \end{aligned}$$

For \(z\in {\bar{S}}\), define \(f(z)=u|f|^{\frac{p(1-z)}{p_0}+\frac{pz}{p_1}}\) and \(g(z)=v|g|^{\frac{q'(1-z)}{q'_0}+\frac{q'z}{q'_1}}\) where the continuous functional calculus is defined by complex powers of positive operators. By the density argument, we could suppose that |f| and |g| are linear combinations of mutually orthogonal projections of finite trace, i.e.

$$\begin{aligned} |f|=\sum _{j=1}^n\alpha _je_j,\quad |g|=\sum _{k=1}^m\beta _k{\tilde{e}}_k \end{aligned}$$

where \(\alpha _j\)s, \(\beta _k\)s are real and \(e_j\)s, \({\tilde{e}}_k\)s are mutually orthogonal basis. Then

$$\begin{aligned} f(z)=\sum _{j=1}^n\alpha _j^{\frac{p(1-z)}{p_0}+\frac{pz}{p_1}}ue_j. \end{aligned}$$

Therefore the function \(z\rightarrow f(z)\) is an analytic function on \({{\mathbb {C}}}\) taking values in \({{\mathcal {M}}}\). Similar properties hold for the function \(z\rightarrow g(z)\). Define

$$\begin{aligned} F(z)=\tau (g(z)T_z(f(z))). \end{aligned}$$

Then we have

$$\begin{aligned} F(z)=\sum _{j=1}^n\sum _{k=1}^m\alpha _j^{\frac{p(1-z)}{p_0}+\frac{pz}{p_1}} \beta _k^{\frac{q'(1-z)}{q'_0}+\frac{q'z}{q'_1}}\tau (v{\tilde{e}}_kT_z(ue_j)). \end{aligned}$$

By our assumption, \(\tau (v{\tilde{e}}_kT_z(ue_j))\) is analytic. Hence F(z) is an analytic function satisfying the hypothesis of Lemma A.2. Recall a property of polar decomposition: \(|f|=|f|u^*u=u^*u|f|\), then by the continuous functional calculus of |f|, we obtain

$$\begin{aligned} \omega (|f|)=\omega (|f|)u^*u=u^*uw(|f|), \end{aligned}$$
(A.3)

where \(\omega \) is a continuous function on \({{\mathbb {R}}}_+\). Since

$$\begin{aligned} f(iy)=u|f|^{iyp(\frac{1}{p_1}-\frac{1}{p_0})+\frac{p}{p_0}}, \end{aligned}$$

then by (A.3), we get

$$\begin{aligned} \begin{aligned} |f(iy)|^2=f^*(iy)f(iy)=|f|^{-iyp(\frac{1}{p_1}-\frac{1}{p_0})+\frac{p}{p_0}} u^*u|f|^{iyp(\frac{1}{p_1}-\frac{1}{p_0})+\frac{p}{p_0}} =|f|^{\frac{2p}{p_0}}. \end{aligned} \end{aligned}$$

Therefore we get \(\Vert f(iy)\Vert _{L_{p_0}({{\mathcal {M}}})}=1\). Similarly \(\Vert f(1+iy)\Vert _{L_{p_1}({{\mathcal {M}}})}=1=\Vert g(iy)\Vert _{L_{q'_0}({{\mathcal {M}}})}=\Vert g(1+iy) \Vert _{L_{q'_1}({{\mathcal {M}}})}\). Hölder’s inequality and our assumption show that for all \(y\in {{\mathbb {R}}}\),

$$\begin{aligned} \begin{aligned} |F(iy)|&\le \Vert T_{iy}(f(iy))\Vert _{L_{q_0}({{\mathcal {M}}})}\Vert g(iy)\Vert _{L_{q'_0}({{\mathcal {M}}})}\\&\le M_0(y)\Vert f(iy)\Vert _{L_{p_0}({{\mathcal {M}}})}\Vert g(iy)\Vert _{L_{q'_0}({{\mathcal {M}}})}=M_0(y). \end{aligned} \end{aligned}$$

Similarly for all \(y\in {{\mathbb {R}}}\), \(|F(1+iy)|\le M_1(y)\). Now applying Lemma A.2 with the preceding two estimates and notice that \(\cosh (\pi y)=\frac{1}{2}(e^{\pi y}+e^{-\pi y})\ge 1\ge \cos (\pi x)\), we get

$$\begin{aligned} |\tau (gT_\theta (f))| =|F(\theta )|\le M(\theta ), \end{aligned}$$

which implies the required estimate. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, X. Sharp Estimates of Noncommutative Bochner–Riesz Means on Two-Dimensional Quantum Tori. Commun. Math. Phys. 390, 193–230 (2022). https://doi.org/10.1007/s00220-021-04226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04226-4

Navigation