Skip to main content
Log in

Airy Kernel Determinant Solutions to the KdV Equation and Integro-Differential Painlevé Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a family of unbounded solutions to the Korteweg–de Vries equation which can be constructed as log-derivatives of deformed Airy kernel Fredholm determinants, and which are connected to an integro-differential version of the second Painlevé equation. The initial data of the Korteweg–de Vries solutions are well-defined for \(x>0\), but not for \(x<0\), where the solutions behave like \(\frac{x}{2t}\) as \(t\rightarrow 0\), and hence would be well-defined as solutions of the cylindrical Korteweg–de Vries equation. We provide uniform asymptotics in x as \(t\rightarrow 0\); for \(x>0\) they involve an integro-differential analogue of the Painlevé V equation. A special case of our results yields improved estimates for the tails of the narrow wedge solution to the Kardar–Parisi–Zhang equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. For simplicity, in the following equations of this remark we omit the dependence of \({{\hat{\phi }}}_\sigma (z;t_1,t_3)\) on the parameters \(t_1\) and \(t_3\).

References

  1. Ablowitz, M.J., Segur, H.: Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38(20), 1103–1106 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  2. Adler, M., Shiota, T., van Moerbeke, P.: Random matrices, Virasoro algebras, and noncommutative KP. Duke Math. J. 94(2), 379–431 (1998)

    Article  MathSciNet  Google Scholar 

  3. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MathSciNet  Google Scholar 

  4. Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy–Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys. 280(2), 463–497 (2008)

    Article  ADS  Google Scholar 

  5. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

    Article  MathSciNet  Google Scholar 

  6. Baik, J., Liu, Z., Silva, G.L.F.: Limiting one-point distribution of periodic TASEP. arXiv:2008.07024 (2020)

  7. Bertola, M., Cafasso, M.: The transition between the gap probabilities from the Pearcey to the Airy process-a Riemann–Hilbert approach. Int. Math. Res. Not. IMRN 2012(7), 1519–1568 (2012)

    Article  MathSciNet  Google Scholar 

  8. Betea, D., Bouttier, J.: The periodic Schur process and free fermions at finite temperature. Math. Phys. Anal. Geom. 22(1), 3 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bogatskiy, A., Claeys, T., Its, A.: Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge. Commun. Math. Phys. 347(1), 127–162 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Borodin, A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Borodin, A., Gorin, V.: Moments match between the KPZ equation and the Airy point process. SIGMA Symmetry Integr. Geom. Methods Appl. 12, 102 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bothner, T.: On the origins of Riemann–Hilbert problems in mathematics. To appear in Nonlinearity. arXiv:2003.14374 (2020)

  13. Bothner, T., Cafasso, M., Tarricone, S.: Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel. arXiv:2101.03557 (2021)

  14. Cafasso, M., Claeys, T.: A Riemann-Hilbert approach to the lower tail of the KPZ equation. Commun. Pure. Appl. Math. https://doi.org/10.1002/cpa.21978

  15. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. EPL (Europhys. Lett.) 90(2), 20002 (2010)

    Article  ADS  Google Scholar 

  16. Charlier, C., Claeys, T.: Large gap asymptotics for Airy kernel determinants with discontinuities. Commun. Math. Phys. 1, 2 (2019). https://doi.org/10.1007/s00220-019-03538-w

    Article  MATH  Google Scholar 

  17. Charlier, C., Doeraene, A.: The generating function for the Bessel point process and a system of coupled Painlevé V equations. Random Matrices Theory Appl. 8(03), 1950008 (2019)

    Article  MathSciNet  Google Scholar 

  18. Claeys, T., Doeraene, A.: The generating function for the Airy point process and a system of coupled Painlevé II equations. Stud. Appl. Math. 140(4), 403–437 (2018)

    Article  MathSciNet  Google Scholar 

  19. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(01), 1130001 (2012)

    Article  MathSciNet  Google Scholar 

  20. Corwin, I., Ghosal, P.: Lower tail of the KPZ equation. Duke Math. J. 169, 7 (2020)

    Article  MathSciNet  Google Scholar 

  21. Deift, P.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (1999)

  22. Deift, P., Its, A., Krasovsky, I.: Asymptotics of the Airy-kernel determinant. Commun. Math. Phys. 278(3), 643–678 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Deift, P., Its, A.R., Zhou, X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. (2) 146(1), 149–235 (1997)

    Article  MathSciNet  Google Scholar 

  24. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  Google Scholar 

  25. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Bull. Am. Math. Soc. N.S. 26(1), 119–123 (1992)

    Article  MathSciNet  Google Scholar 

  26. Dotsenko, V.: Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers. EPL (Europhys. Lett.) 90, 20003 (2010)

    Article  ADS  Google Scholar 

  27. Dubrovin, B., Minakov, A.: On a class of compact perturbations of the special pole-free joint solution of KdV and \(P_2^I\). arXiv:1901.07470 (2019)

  28. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ (2010)

    Google Scholar 

  29. Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73(1), 31–51 (1980)

    Article  Google Scholar 

  30. Imamura, T., Sasamoto, T.: Determinantal structures in the O’Connell–Yor directed random polymer model. J. Stat. Phys. 163, 675–713 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 4(05), 1003–1037 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. Its, A.R., Sukhanov, V.: Large time asymptotics for the cylindrical Korteweg–de Vries equation. I. Nonlinearity 33, 10 (2020)

    Article  MathSciNet  Google Scholar 

  33. Johansson, K.: From Gumbel to Tracy–Widom. Probab. Theory Relat. Fields 138(1), 75–112 (2007)

    Article  MathSciNet  Google Scholar 

  34. Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation. Annals of Mathematics Studies, vol. 154. Princeton University Press, Princeton, NJ (2003)

    MATH  Google Scholar 

  35. Krajenbrink, A.: From Painleve to Zakharov-Shabat and beyond: Fredholm determinants and integro-differential hierarchies. arXiv:2008.01509 (2020)

  36. Krajenbrink, A., Le Doussal, P.: Simple derivation of the \((-\lambda H)^{5/2}\) tail for the 1D KPZ equation. J. Stat. Mech. Theory Exp. 063210 (2018)

  37. Le Doussal, P.: Large deviations for the Kardar–Parisi–Zhang equation from the Kadomtsev–Petviashvili equation. J. Stat. Mech. Theory Exp. 2020(4), 043201 (2020)

    Article  MathSciNet  Google Scholar 

  38. Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. I. Arch. Rational Mech. Anal. 59(3), 219–239 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  40. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Rational Mech. Anal. 59(3), 241–256 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  41. Liechty, K., Nguyen, G.B., Remenik, D.: Airy process with wanderers, KPZ fluctuations, and a deformation of the Tracy–Widom GOE distribution. arXiv:2009.07781 (2020)

  42. Liechty, K., Wang, D.: Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe–Neuberger–Shapiro random matrix model. Ann. Inst. Henri Poincaré Probab. Statist. 56, 2 (2020)

    Article  MathSciNet  Google Scholar 

  43. Lyu, S., Chen, Y.: Gaussian unitary ensemble with two jump discontinuities, PDEs and the coupled Painlevé II and IV systems. arXiv:2006.07596 (2020)

  44. Moshe, M., Neuberger, H., Shapiro, B.: Generalized ensemble of random matrices. Phys. Rev. Lett. 73(11), 1497–1500 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  45. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15

  46. Pöppe, C., Sattinger, D.H.: Fredholm determinants and the \(\tau \) Function for the Kadomtsev–Petviashvili hierarchy. Publ. Res. Inst. Math. Sci. 24(4), 505–538 (1988)

    Article  MathSciNet  Google Scholar 

  47. Quastel, J., Remenik, D.: KP governs random growth off a one dimensional substrate. arXiv:1908.10353 (2019)

  48. Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834(3), 523–542 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sasorov, P., Meerson, B., Prolhac, S.: Large deviations of surface height in the \(1+1\)-dimensional Kardar–Parisi–Zhang equation: exact long-time results for \(\lambda H \le 0\). J. Stat. Mech. Theory Exp. 2017(6), 063203 (2017)

    Article  MathSciNet  Google Scholar 

  50. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923 (2000)

    Article  MathSciNet  Google Scholar 

  51. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  52. Tsai, L.C.: Exact lower tail large deviations of the KPZ equation. arXiv:1809.03410 (2018)

  53. Wu, X.-B., Xu, S.-X.: Gaussian unitary ensemble with jump discontinuities and the coupled Painlevé II and IV systems. arXiv:2002.11240 (2020)

  54. Xu, S.-X., Dai, D.: Tracy–Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system. Commun. Math. Phys. 365(2), 515–567 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.C. and G.R. were supported by the Fonds de la Recherche Scientifique-FNRS under EOS Project O013018F. M.C. was supported by the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie RISE 2017 Grant agreement No. 778010 IPaDEGAN. The authors are grateful to Alexander Its for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Cafasso.

Additional information

Communicated by K. Johansson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Solvability of the Model RH Problem for \(\Phi _\sigma \)

Solvability of the Model RH Problem for \(\Phi _\sigma \)

We now establish the existence of the solution to the RH problem for \(\Phi _ {\sigma }\); to this end we rely on the following vanishing lemma, which shows that there are no nontrivial solutions to the homogeneous version of the RH problem for \(\Phi _ {\sigma }\).

Lemma A.1

(Vanishing lemma). Let H be a \(2\times 2\) matrix function satisfying the following conditions.

  1. (a)

    H is analytic in \({\mathbb {C}}\setminus {\mathbb {R}}\).

  2. (b)

    H has boundary values \(H_{\pm }\) on \({\mathbb {R}}\) which are \(L^2\) on any compact real set, and which are continuous on the real line except at the points \(r_1, \ldots ,r_k\), and they are related by

    $$\begin{aligned} H_{+}\left( z\right) =H_{-}\left( z\right) \begin{pmatrix}1&{}1- {\sigma }\left( z\right) \\ 0&{}1\end{pmatrix}. \end{aligned}$$
    (7.27)
  3. (c)

    For \(|\arg z|<\pi \), we have uniformly

    $$\begin{aligned} H\left( z\right) = \mathcal O\left( |z|^{-3/4}\right) \mathrm{e}^{ x z^{1/2}\sigma _3} \; \text {as} \; z\rightarrow \infty . \end{aligned}$$
    (7.28)

Then \(H\left( z\right) =0\) identically in z.

Proof

The proof follows standard arguments, see for example [24]. Set

$$\begin{aligned} M\left( z\right) =H\left( z\right) \begin{pmatrix} 0 &{} -1 \\ 1 &{} 0 \end{pmatrix}H^\dagger \left( {{\overline{z}}}\right) , \end{aligned}$$

where \(H^\dagger \) denotes the conjugate transpose of H. Then \(M\left( z\right) \) is an analytic function of \( z\in {\mathbb {C}}\setminus {\mathbb {R}}\), and as \( z\rightarrow \infty \) we have, from (A.2), \(M\left( z\right) ={\mathcal {O}}\left( |z|^{-3/2}\right) \). Therefore by Cauchy’s theorem we have

$$\begin{aligned} \int _{\mathbb {R}}M_+\left( z\right) \mathrm {d}z=\int _{\mathbb {R}}H_+\left( z\right) \begin{pmatrix} 0 &{} -1 \\ 1 &{} 0 \end{pmatrix}H_-^\dagger \left( z\right) \mathrm {d}z=0 \end{aligned}$$

implying

$$\begin{aligned} \int _{-\infty }^{+\infty } H_-\left( z\right) \begin{pmatrix} 1 &{} 1- {\sigma }\left( z\right) \\ 0 &{} 1 \end{pmatrix}\begin{pmatrix} 0 &{} -1 \\ 1 &{} 0 \end{pmatrix} H_-^\dagger \left( z\right) \mathrm {d}z =\int _{-\infty }^{+\infty } H_-\left( z\right) \begin{pmatrix} 1- {\sigma }\left( z\right) &{} -1 \\ 1 &{} 0 \end{pmatrix}H_-^\dagger \left( z\right) \mathrm {d}z=0.\nonumber \\ \end{aligned}$$
(A.1)

Adding (A.3) and its adjoint we obtain

$$\begin{aligned} \int _{-\infty }^{+\infty } H_-\left( z\right) \begin{pmatrix} 1- {\sigma }\left( z\right) &{} 0 \\ 0 &{} 0 \end{pmatrix}H_-^\dagger \left( z\right) \mathrm {d}z \\ =\int _{-\infty }^{+\infty }\left( 1- {\sigma }\left( z\right) \right) \begin{pmatrix} |H_{11,-}\left( z\right) |^2 &{} H_{11,-}\left( z\right) {\overline{H}}_{21,-}\left( z\right) \\ {\overline{H}}_{11,-}\left( z\right) H_{21,-}\left( z\right) &{} |H_{21,-}\left( z\right) |^2 \end{pmatrix}\mathrm {d}z=0, \end{aligned}$$

implying \(\left( 1- {\sigma }\left( z\right) \right) H_{11,-}\left( z\right) =0\) and \(\left( 1- {\sigma }\left( z\right) \right) H_{21,-}\left( z\right) =0\) identically for z on the real line; it follows that

$$\begin{aligned} H_+\left( z\right) -H_-\left( z\right) =H_-\left( z\right) \begin{pmatrix} 0 &{} 1- {\sigma }\left( z\right) \\ 0 &{} 0\end{pmatrix}=\begin{pmatrix} 0 &{} \left( 1- {\sigma }\left( z\right) \right) H_{11,-}\left( z\right) \\ 0 &{} \left( 1- {\sigma }\left( z\right) \right) H_{21,-}\left( z\right) \end{pmatrix}=0,\qquad z\in {\mathbb {R}}, \end{aligned}$$

and so, by the Schwarz reflection principle, \(H\left( z\right) \) is analytic throughout the whole complex plane (possible poles at \(r_1,\dots ,r_k\) are ruled out by the \(L^2\) condition on the boundary values of H). Therefore \(H_{11}\left( z\right) \) and \(H_{21}\left( z\right) \) vanish identically, because they are entire and they vanish along some nonzero interval of \({\mathbb {R}}\). It follows from this together with the jump condition (A.1) that \(H_{12}\left( z\right) \) and \(H_{22}\left( z\right) \) are entire functions, which by (A.2) behave as \({\mathcal {O}}\left( z^{-3/4}{\mathrm {e}}^{-xz^{1/2}}\right) \) when \(z\rightarrow \infty \) uniformly in all directions of the complex plane; because of our choice of branch for the square root, one concludes from the Liouville theorem that also \(H_{12}\left( z\right) \) and \(H_{22}\left( z\right) \) vanish identically. \(\square \)

Finally we follow the standard argument to infer that the solution to the RH problem for \(\Phi _ {\sigma }\) exists; indeed, it is known that \(\Phi _ {\sigma }\) exists if and only if a certain Fredholm operator of index zero is invertible, and it is easy to see that the kernel of this operator is nontrivial if and only there exists a matrix H with the properties listed in Lemma A.1. We refer to [34, App. A] for a detailed explanation of this argument; in this respect we point out that the RH problem for \(\Phi _ {\sigma }\) can be transformed by elementary, though lengthy, transformations into an umbilical RH problem in the sense of [34].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cafasso, M., Claeys, T. & Ruzza, G. Airy Kernel Determinant Solutions to the KdV Equation and Integro-Differential Painlevé Equations. Commun. Math. Phys. 386, 1107–1153 (2021). https://doi.org/10.1007/s00220-021-04108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04108-9

Navigation