Skip to main content
Log in

Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Tracy-Widom distribution functions involve integrals of a Painlevé II function starting from positive infinity. In this paper, we express the Tracy-Widom distribution functions in terms of integrals starting from minus infinity. There are two consequences of these new representations. The first is the evaluation of the total integral of the Hastings-McLeod solution of the Painlevé II equation. The second is the evaluation of the constant term of the asymptotic expansions of the Tracy-Widom distribution functions as the distribution parameter approaches minus infinity. For the GUE Tracy-Widom distribution function, this gives an alternative proof of the recent work of Deift, Its, and Krasovsky. The constant terms for the GOE and GSE Tracy-Widom distribution functions are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M. and Stegun I. (1965). Handbook of Mathematical Functions. Dover Publications, New York

    Google Scholar 

  2. Baik J., Deift P. and Johansson K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12: 1119–1179

    Article  MATH  MathSciNet  Google Scholar 

  3. Baik J. and Rains E.M. (2000). Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100: 523–541

    Article  MATH  MathSciNet  Google Scholar 

  4. Baik J. and Rains E.M. (2001). Algebraic aspects of increasing subsequences. Duke Math. J. 109: 1–65

    Article  MATH  MathSciNet  Google Scholar 

  5. Baik J. and Rains E.M. (2001). The asymptotics of monotone subsequences of involutions. Duke Math. J. 109: 205–281

    Article  MATH  MathSciNet  Google Scholar 

  6. Choi J., Srivastava M. and Adamchik V. (2003). Multiple gamma and related functions. Appl. Math. Comput. 134: 515–533

    Article  MATH  MathSciNet  Google Scholar 

  7. Deift, P.: Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach. Providence, RI: Amer. Math. Soc. 1998

  8. Deift, P., Its, A., Krasovsky, I.: Asymptotics of the Airy-kernel determinant. http://larXiv.org/list/math.FA/0609451v1, 2006

  9. Deift P., Its A., Krasovsky I. and Zhou X. (2007). The Widom-Dyson constant for the gap probability in random matrix theory. J. Comput. Appl. Math. 202: 26–47

    Article  MATH  MathSciNet  Google Scholar 

  10. Deift P., Kriecherbauer T. and McLaughlin K. (1998). New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95: 388–475

    Article  MATH  MathSciNet  Google Scholar 

  11. Deift P., Kriecherbauer T., McLaughlin K., Venakides S. and Zhou X. (1999). Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52: 1335–1425

    Article  MATH  MathSciNet  Google Scholar 

  12. Deift P. and Zhou X. (1995). Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48: 277–337

    Article  MATH  MathSciNet  Google Scholar 

  13. Dyson F. (1976). Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47: 171–183

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ehrhardt T. (2006). Dyson’s constant in the asymptotics of the Fredholm determinant of the sine kernel. Commun. Math. Phys. 262: 317–341

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ehrhardt T. (2007). Dyson’s constants in the asymptotics of the determinants of Wiener-Hopf-Hankel operators with the sine kernel. Comm. Math. Phys. 272(3): 683–698

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé Transcendents. Mathematical Surveys and Monographs, 128, Providence, RI: Amer. Math. Soc., 2006

  17. Fokas A., Its A. and Kitaev V. (1991). Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142: 313–344

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Forrester P. (1994). Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Math. Phys. 35: 2539–2551

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hastings S. and McLeod J. (1980). A boundary value problem associated with the second Painlevé transcendent and the Korteweg de Vries equation. Arch. Rat. Mech. Anal. 73: 31–51

    Article  MATH  MathSciNet  Google Scholar 

  20. Krasovsky I. (2004). Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle. Int. Math. Res. Not. 262: 1249–1272

    Article  MathSciNet  Google Scholar 

  21. Majumdar, S.: Random matrices, the Ulam problem, directed polymers & growth models, and sequence matching. In: Complex Systems, ixxxv, J.-P. Bouchard, M. Mézard,, J. Daibard, eds., Odford: Elsevier, 2007

  22. Mehta M. (1991). Random Matrices. Academic Press, San Diego

    MATH  Google Scholar 

  23. Szego, G.: Orthogonal Polynomials. Colloquium Publications, 23, Providence, RI: Amer. Math. Soc., 1975

  24. Tracy C. and Widom H. (1994). Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159: 151–174

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Tracy C. and Widom H. (1996). On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177: 727–754

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Voros A. (1987). Spectral functions, special functions and the Selberg zeta function. Commun. Math. Phys. 110: 439–465

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Widom H. (1971). The strong Szegö limit theorem for circular arcs. Indiana Univ. Math. J. 21: 277–283

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Buckingham.

Additional information

Communicated by P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baik, J., Buckingham, R. & DiFranco, J. Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function. Commun. Math. Phys. 280, 463–497 (2008). https://doi.org/10.1007/s00220-008-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0433-5

Keywords

Navigation