Skip to main content
Log in

Directed Polymers on Infinite Graphs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the directed polymer model for general graphs (beyond \({\mathbb {Z}}^d\)) and random walks. We provide sufficient conditions for the existence or non-existence of a weak disorder phase, of an \(L^2\) region, and of very strong disorder, in terms of properties of the graph and of the random walk. We study in some detail (biased) random walk on various trees including the Galton–Watson trees, and provide a range of other examples that illustrate counter-examples to intuitive extensions of the \({\mathbb {Z}}^d\)/SRW result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlow, M.T.: Random walks and diffusions on fractals. In: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pp. 1025–1035. Math. Soc. Japan, Tokyo (1991)

  3. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barlow, M.T., Bass, R.F.:. Random walks on graphical Sierpinski carpets. In: Random Walks and Discrete Potential Theory (Cortona, 1997), Sympos. Math., XXXIX, pp. 26–55. Cambridge University Press, Cambridge (1999)

  5. Bates, E., Chatterjee, S.: The endpoint distribution of directed polymers. Ann. Probab. 48(2), 817–871 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, Q., Toninelli, F.L.: On the critical point of the random walk pinning model in dimension \(d=3\). Electron. J. Probab. 15(21), 654–683 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Birkner, M.: A condition for weak disorder for directed polymers in random environment. Electron. Commun. Probab. 9, 22–25 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkner, M., Greven, A., den Hollander, F.: Collision local time of transient random walks and intermediate phases in interacting stochastic systems. Electron. J. Probab. 16, 552–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birkner, M., Sun, R.: Annealed vs. quenched critical points for a random walk pinning model. Ann. Inst. Henri Poincaré Probab. Stat. 46(2), 414–441 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Birkner, M., Sun, R.: Disorder relevance for the random walk pinning model in dimension 3. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 259–293 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123(4), 529–534 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Brunet, E., Derrida, B.: Probability distribution of the free energy of a directed polymer in a random medium. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61 Pt B(6), 6789–6801 (2000)

    MathSciNet  Google Scholar 

  13. Buffet, E., Patrick, A., Pule, J.V.: Directed polymers on trees: a martingale approach. J. Phys. A Math. Gen. 26(8), 1823–1834 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Carmona, P., Guerra, F., Yueyun, H., Mejane, O.: Strong disorder for a certain class of directed polymers in a random environment. J. Theor. Probab. 19, 04 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Carmona, P., Yueyun, H.: On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Relat. Fields 124(3), 431–457 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Comets, F.: Directed polymers in random environments. École d’Été de Probabilités de Saint-Flour XLVI—2016. Springer, Cham (2017)

  17. Comets, F., Liu, Q.: Rate of convergence for polymers in a weak disorder. J. Math. Anal. Appl. 455(1), 312–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Comets, F., Moreno, G., Ramírez, A.F.: Random polymers on the complete graph. Bernoulli 25(1), 683–711 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9(4), 705–723 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Comets, F., Vargas, V.: Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Comets, F., Yoshida, N.: Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34, 1746–1770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Comets, F., Yoshida, N.: Localization transition for polymers in Poissonian medium. Commun. Math. Phys. 323(1), 417–447 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Cosco, C., Nakajima, S.: Gaussian fluctuations for the directed polymer partition function for \(d\ge 3\) and in the whole \(l^2\)-region. To appear in Ann. IHP. (2020). arXiv:1903.00997

  24. Cosco, C., Nakajima, S., Nakashima, M.: Law of large numbers and fluctuations in the sub-critical and \(L^2\) regions for SHE and KPZ equation in dimension \(d\ge 3\) (2020). arXiv:2005.12689

  25. Dembo, A., Gantert, N., Peres, Y., Zeitouni, O.: Large deviations for random walks on Galton–Watson trees: averaging and uncertainty. Probab. Theory Relat. Fields 122(2), 241–288 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. den Hollander, F., König, W., dos Santos, R.S.: The parabolic Anderson model on a Galton–Watson tree (2020)

  27. Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51(5–6), 817–840 (1988). New directions in statistical mechanics (Santa Barbara, CA, 1987)

  28. Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: Fluctuations of the solutions to the KPZ equation in dimensions three and higher. Probab. Theory Relat. Fields 176, 1217–1258 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eckmann, J.-P., Wayne, C.E.: The largest Lyapunov exponent for random matrices and directed polymers in a random environment. Commun. Math. Phys. 121(1), 147–175 (1989)

    Article  ADS  MATH  Google Scholar 

  30. Grimmett, G.: Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften, 2nd edition. Springer, Berlin (1999)

  31. Grimmett, G., Kesten, H., Zhang, Yu.: Random walk on the infinite cluster of the percolation model. Probab. Theory Relat. Fields 96(1), 33–44 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gu, Y., Ryzhik, L., Zeitouni, O.: The Edwards–Wilkinson limit of the random heat equation in dimensions three and higher. Commun. Math. Phys. 363(2), 351–388 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Hambly, B., Kumagai, T.: Asymptotics for the spectral and walk dimension as fractals approach euclidean space. Fractals 10(4), 403–412 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54(25), 2708 (1985)

    Article  ADS  Google Scholar 

  36. Imbrie, J., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(3–4), 609–626 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Jones, O.D.: Transition probabilities for the simple random walk on the Sierpiński graph. Stoch. Process. Appl. 61(1), 45–69 (1996)

    Article  MATH  Google Scholar 

  38. Kajino, N., Konishi, K., Nakashima, M.: Two-sided bounds on free energy of directed polymers on strongly recurrent graphs. Preprint (2020). arXiv:2010.12312

  39. Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  40. Krishnapur, M., Peres, Y.: Recurrent graphs where two independent random walks collide finitely often. Electron. Commun. Probab. 9, 72–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kumagai, T.: Random walks on disordered media and their scaling limits: École d’Été de Probabilités de Saint-Flour XL—2010. Lecture Notes in Mathematics, vol. 2101. Springer International Publishing, Cham (2014)

  42. Lacoin, H.: New bounds for the free energy of directed polymers in dimension \(1+1\) and \(1+2\). Commun. Math. Phys. 294(2), 471–503 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Liu, Q., Watbled, F.: Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment. Stoch. Process. Appl. 119(10), 3101–3132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lygkonis, D., Zygouras, N.: Edwards–Wilkinson fluctuations for the directed polymer in the full \(l^2\)-regime for dimensions \(d \ge 3\) (2020). arXiv:2005.12706

  45. Lyons, R.: Random walks and percolation on trees. Ann. Probab. 18, 931–958 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lyons, R., Pemantle, R., Peres, Y.: Biased random walks on Galton–Watson trees. Probab. Theory Relat. Fields 106, 10 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lyons, R., Peres, Y.: Probability on trees and networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

  48. Magnen, J., Unterberger, J.: The scaling limit of the KPZ equation in space dimension 3 and higher. J. Stat. Phys. 171(4), 543–598 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mathieu, P.: Carne–Varopoulos bounds for centered random walks. Ann. Probab. 34(3), 987–1011 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Peres, Y., Zeitouni, O.: A central limit theorem for biased random walks on Galton–Watson trees. Probab. Theory Relat. Fields 140(3–4), 595–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Seroussi, I., Sochen, N.: Spectral analysis of a non-equilibrium stochastic dynamics on a general network. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  52. Shi, Z.: Branching random walks, volume 2151 of Lecture Notes in Mathematics. Springer, Cham, 2015. Lecture notes from the 42nd Probability Summer School held in Saint Flour (2012)

  53. Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  54. Viveros, R.: Directed Polymer for very heavy tailed random walks (2020). arXiv:2003.14280

  55. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank the authors of [38] for a their comments and for sending us a preliminary draft of their work. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (Grant Agreement No. 692452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Zeitouni.

Additional information

Communicated by H. Spohn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosco, C., Seroussi, I. & Zeitouni, O. Directed Polymers on Infinite Graphs. Commun. Math. Phys. 386, 395–432 (2021). https://doi.org/10.1007/s00220-021-04034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04034-w

Navigation