Skip to main content

Advertisement

Log in

A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of \({\mathbb {R}}^2\). Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szegő type inequality as well as a new reformulation of a Faber–Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber–Krahn type inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agricola, I., Friedrich, T.: Upper bounds for the first eigenvalue of the Dirac operator on surfaces. J. Geom. Phys 30(1), 1–22 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Antunes, P.R.S.: Extremal p-Laplacian eigenvalues. Nonlinearity 32, 5087–5109 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arrizabalaga, N., Le Treust, L., Mas, A., Raymond, N.: The MIT bag model as an infinite mass limit. Journal de l’École Polytechnique - Mathématiques, Tome 6, 329–365 (2019)

    Article  MathSciNet  Google Scholar 

  4. Arrizabalaga, N., Le Treust, L., Raymond, N.: On the MIT bag model in the non-relativistic limit. Commun. Math. Phys. 354, 641 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arrizabalaga, N., Mas, A., Vega, L.: Shell interactions for Dirac operators. J. Math. Pures Appl. 102, 617–639 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bär, C.: Lower eigenvalue estimates for Dirac operator. Math. Ann. 293, 39–46 (1992)

    Article  MathSciNet  Google Scholar 

  7. Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16(2), 573–596 (1998)

    Article  MathSciNet  Google Scholar 

  8. Barbaroux, J.-M., Cornean, H.D., Le Treust, L., Stockmeyer, E.: Resolvent convergence to Dirac operators on planar domains. Ann. Henri Poincaré 20, (2019)

  9. Behrndt, J., Holzmann, M., Ourmières-Bonafos, T., Pankrashkin, K.: Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal. 279, 46 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bell, S.R.: The Cauchy Transform. Potential Theory and Conformal Mapping, 2nd edn. Chapman & Hall Book, Boca Raton (2016)

  11. Benguria, R.D., Fournais, S., Van Den Bosch, H., Stockmeyer, E.: Self-adjointness of two dimensional Dirac operators on domains. Ann. Henri Poincaré 18, 1371–1383 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Benguria, R.D, Fournais, S., Van Den Bosch, H., Stockmeyer, E.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Geom. 20, article 11 (2017)

  13. Bossel, M..-H.: Membranes élastiquement liées: Extension du théorème de Rayleigh-Faber–Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math 302, 47–50 (1986)

  14. Brezis, H.: Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983)

    MATH  Google Scholar 

  15. Daners, D.: A Faber-Krahn inequality for Robin problems in any dimensions. Math. Ann. 335, 767–785 (2006)

    Article  MathSciNet  Google Scholar 

  16. Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174, 208–226 (2000)

  17. Dolbeault, J., Esteban, M.J., Séré, E.: A variational method for relativistic computations in atomic and molecular physics. Int. J. Quantum Chem. 93, 149–155 (2003)

    Article  Google Scholar 

  18. Faber, G.: Beweis, daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Münch. Ber. 169–172 (1923)

  19. Fefferman, C.L., Weinstein, M.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012)

    Article  MathSciNet  Google Scholar 

  20. Flyer, N., Fornberg, B.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)

    Article  MathSciNet  Google Scholar 

  21. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  22. Griesemer, M., Siedentop, H.: A minimax principle for the eigenvalues in spectral gaps. J. Lond. Math. Soc. 60(2), 490–500 (1999)

    Article  MathSciNet  Google Scholar 

  23. Holzmann, M., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators with Lorentz scalar interactions. Rev. Math. Phys. 30(05), 1850013 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-I: surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  25. Kato, T.: Perturbation theory for linear operators. Berlin: Springer, Reprint of the corr. print. of the 2nd ed. 1980 (1995)

  26. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1925)

    Article  MathSciNet  Google Scholar 

  27. Le Treust, L., Ourmières-Bonafos, T.: Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors. Ann. Henri Poincaré 19(5), 1465–1487 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lotoreichik, V., Ourmières-Bonafos, T.: A sharp upper bound on the spectral gap for graphene quantum dots. Math. Phys. Anal. Geom. 22, 13 (2019)

    Article  MathSciNet  Google Scholar 

  29. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Moroianu, A., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators on hypersurfaces as large mass limits. Comm. Math. Phys. 374, 1963–2013 (2020). Preprint ArXiv:181103340

  31. Ourmières-Bonafos, T., Vega, L.: A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and \(\delta \)-shell interactions. Publ. Mat. 62(2), 397–437 (2018)

    Article  MathSciNet  Google Scholar 

  32. Pythe, K.P.: Complex Analysis. Conformal Inequalities and the Bieberbach conjecture. CRC Press, Boca Raton (2016)

    Google Scholar 

  33. Raulot, S.: The Hijazi inequality on manifolds with boundary. J. Geom. Phys. 56(11), 2189–2202 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Saranen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximations. Springer, Berlin (2002)

    Book  Google Scholar 

  35. Sauter, S.A., Schwab, C.: Boundary Elements Methods. Translated and Expanded from the 2004 German Original, Springer Series in Computational Mathematics, 39, Springer, Berlin (2011). https://www.springer.com/gp/book/9783540680925

  36. Schimmer, L., Solovej, J.P., Tokus, S.: Friedrichs Extension and Min-Max Principle for Operators with a Gap. To appear in Ann. Henri Poincaré, 21, 327–357 (2020), preprint ArXiv:1806.05206

  37. Schmidt, K.M.: A remark on boundary value problems for the Dirac operator. Q. J. Math. 46(4), 509–516 (1995)

    Article  MathSciNet  Google Scholar 

  38. Stockmeyer, E., Vugalter, S.: Infinite mass boundary conditions for Dirac operators. J. Spectr. Theory 9(2), 569–600 (2019)

    Article  MathSciNet  Google Scholar 

  39. Szegő, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3, 354–356 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R. D. Benguria, V. Lotoreichik and T. Ourmières-Bonafos are very grateful to the American Institute of Mathematics (AIM) for supporting their participation in the AIM workshop Shape optimization with surface interactions in 2019, where this project was initiated. The authors thank Lukas Schimmer and Jan Philip Solovej for pointing out a technical gap in an earlier version of this manuscript. T. Ourmières-Bonafos thanks Nicolas Raymond for pointing out that the projectors introduced in Definition 19 are named after the famous mathematician Gábor Szegő.

Funding

The work of R. D. Benguria has been partially supported by FONDECYT (Chile) projects 116-0856, and 120-1055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ourmières-Bonafos.

Additional information

Communicated by R. Seiringer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P.R.S., Benguria, R.D., Lotoreichik, V. et al. A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities. Commun. Math. Phys. 386, 781–818 (2021). https://doi.org/10.1007/s00220-021-03959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03959-6

Navigation