Skip to main content
Log in

Hodge–GUE Correspondence and the Discrete KdV Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the conjectural relationship recently proposed in Dubrovin and Yang (Commun Number Theory Phys 11:311–336, 2017) between certain special cubic Hodge integrals of the Gopakumar–Mariño–Vafa type (Gopakumar and Vafa in Adv Theor Math Phys 5:1415–1443, 1999, Mariño and Vafa in Contemp Math 310:185–204, 2002) and GUE correlators, and the conjecture proposed in Dubrovin et al. (Adv Math 293:382–435, 2016) that the partition function of these Hodge integrals is a tau function of the discrete KdV hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is worth mentioning that in [12] another algorithm for the ribbon graph enumeration, based on the matrix-resolvent method, is obtained which is in particular quite efficient for large genus.

References

  1. Adler, M., van Moerbeke, P.: Integrals over classical groups, random permutations, Toda and Toeplitz lattices. Commun. Pure Appl. Math. 54, 153–205 (2001)

    Article  MathSciNet  Google Scholar 

  2. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barnes, E.W.: The theory of the G-function. Q. J. Pure Appl. Math. 31, 264–314 (1900)

    MATH  Google Scholar 

  4. Bessis, D., Itzykson, C., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1, 109–157 (1980)

    Article  MathSciNet  Google Scholar 

  5. Brézin, E., Itzykson, C., Parisi, P., Zuber, J.-B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Topological open strings on orbifolds. Commun. Math. Phys. 296, 589–623 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, Providence (1999)

    Google Scholar 

  9. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity. Nucl. Phys. B 348, 435–456 (1991)

    Article  ADS  Google Scholar 

  10. Dubrovin, B.: Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: Sidoravičius, V. (ed.) New Trends in Mathematical Physics, pp. 231–276. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  11. Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dubrovin, B., Yang, D.: Generating series for GUE correlators. Lett. Math. Phys. 107, 1971–2012 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dubrovin, B., Yang, D.: On cubic Hodge integrals and random matrices. Commun. Number Theory Phys. 11, 311–336 (2017)

    Article  MathSciNet  Google Scholar 

  14. Dubrovin, B., Yang, D.: Remarks on Intersection Numbers and Integrable Hierarchies. I. Quasi-triviality. eprint arXiv:1905.08106

  15. Dubrovin, B., Zhang, Y.: Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov–Witten Invariants (2001). eprint arXiv:math/0108160

  16. Dubrovin, B., Zhang, Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250, 161–193 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys. 337, 483–567 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Faber, C., Pandharipande, R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139, 173–199 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Fang, B., Liu, C.-C.M., Zong, Z.: On the remodeling conjecture for toric Calabi–Yau 3-orbifolds. J. Am. Math. Soc. 33, 135–222 (2020)

    Article  MathSciNet  Google Scholar 

  20. Ferreira, C., López, J.L.: An asymptotic expansion of the double gamma function. J. Approx. Theory 111, 298–314 (2001)

    Article  MathSciNet  Google Scholar 

  21. Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B 357, 565–618 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  22. Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)

    Article  MathSciNet  Google Scholar 

  23. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 5, 1415–1443 (1999)

    Article  MathSciNet  Google Scholar 

  24. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85, 457–485 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  26. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  ADS  Google Scholar 

  27. ’t Hooft, G.: A two-dimensional model for mesons. Nucl. Phys. B 75, 461–470 (1974)

    Article  ADS  Google Scholar 

  28. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lando, S., Zvonkin, A.: Graphs on Surfaces and Their Applications. Encyclopeadia of Mathematical Sciences. Low-Dimensional Topology II, vol. 141. Springer, Berlin (2004)

    Book  Google Scholar 

  30. Li, J., Liu, C.-C.M., Liu, K., Zhou, J.: A mathematical theory of the topological vertex. Geom. Topol. 13, 527–621 (2009)

    Article  MathSciNet  Google Scholar 

  31. Liu, C.-C.M., Liu, K., Zhou, J.: A proof of a conjecture of Mariño–Vafa on Hodge integrals. J. Differ. Geom. 65, 289–340 (2003)

    Article  Google Scholar 

  32. Liu, C.-C.M., Liu, K., Zhou, J.: A formula of two-partition Hodge integrals. J. Am. Math. Soc. 20, 149–184 (2007)

    Article  MathSciNet  Google Scholar 

  33. Liu, S.-Q., Yang, D., Zhang, Y., Zhou, C.: The Loop Equation for Special Cubic Hodge Integrals. eprint arXiv:1811.10234

  34. Liu, S.-Q., Yang, D., Zhang, Y., Zhou, C.: The Hodge-FVH Correspondence. eprint arXiv:1906.06860

  35. Liu, S.-Q., Zhang, Y., Zhou, C.: Fractional Volterra hierarchy. Lett. Math. Phys. 108, 261–283 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Makeenko, Y., Marshakov, A., Mironov, A., Morozov, A.: Continuum versus discrete Virasoro in one-matrix models. Nucl. Phys. B 356, 574–628 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  37. Mariño, M., Vafa, C.: Framed knots at large N. Contemp. Math. 310, 185–204 (2002)

    Article  MathSciNet  Google Scholar 

  38. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, Cambridge (1991)

    MATH  Google Scholar 

  39. Morozov, A.: Integrability and matrix models. Phys.-Uspekhi 37, 1–55 (1994)

    Article  ADS  Google Scholar 

  40. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1963)

    MATH  Google Scholar 

  41. Witten, E.: Two-Dimensional Gravity and Intersection Theory on Moduli Space. Surveys in Differential Geometry, pp. 243–320. Lehigh Univ, Bethlehem (1991)

    MATH  Google Scholar 

  42. Zhou, J.: On Recursion Relation for Hodge Integrals from the Cut-and-Join Equations. Unpublished (2009)

  43. Zhou, J.: Emergent Geometry of Matrix Models with Even Couplings. eprint arXiv:1903.10767

  44. Zhou, J.: Grothendieck’s Dessins d’Enfants in a Web of Dualities. arXiv:1905.10773

Download references

Acknowledgements

We would like to thank Don Zagier and Jian Zhou for several very useful discussions, and we would also like to thank the anonymous referees for valuable suggestions and comments to help us improve the presentation of the paper. This work is partially supported by NSFC No. 11771238, No. 11725104 and No. 11371214. The work of B.D. is partially supported by the Russian Science Foundation Grant No. 16-11-10260 “Geometry and Mathematical Physics of Integrable Systems”. Parts of the work of D.Y. were done in SISSA, Trieste and in MPIM, Bonn while he was a postdoc; he acknowledges both SISSA and MPIM for excellent working conditions and supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Boris Dubrovin: Deceased on March 19, 2019.

Appendices

Appendix A: Givental Quantization

Denote by \({{\mathcal {V}}}\) the space of Laurent polynomials in z with coefficients in \({{\mathbb {C}}}\). Define a symplectic bilinear form \(\omega \) on \({{\mathcal {V}}}\) by

$$\begin{aligned} \omega (f,g):=- \mathrm{Res}_{z=\infty } f(-z) g(z) \frac{dz}{z^2} = - \omega (g,f) , \quad \forall f,g\in {{\mathcal {H}}}. \end{aligned}$$

The pair \(({{\mathcal {V}}},\omega )\) is called a Givental symplectic space. For any \(f\in {{\mathcal {V}}}\), write

$$\begin{aligned} f = \sum _{i\ge 0} q_i z^{-i} + \sum _{i\ge 0} p_i (-z)^{i+1} . \end{aligned}$$

Then \(\{q_i,\,p_i\}|_{i=0}^\infty \) gives a system of canonical coordinates for \(({{\mathcal {V}}},\omega ).\) The canonical quantization in these coordinates yields operators of the form

$$\begin{aligned} \widehat{p_i} =\epsilon \frac{\partial }{\partial q_i} ,\quad \widehat{q_i} = \frac{1}{\epsilon } q_i \end{aligned}$$

on the Fock space of formal power series in \(q_i\). For any infinitesimal symplectic transformation A on \(({{\mathcal {V}}},\omega )\) which satisfies

$$\begin{aligned} \omega (A f,g)+\omega (f, A g) = 0 , \quad \forall f,g\in {{\mathcal {V}}}, \end{aligned}$$

the Hamiltonian associated to A is defined by

$$\begin{aligned} H_{A}(f) = \frac{1}{2} \omega (f, A f ) = - \frac{1}{2} \mathrm{Res}_{z=\infty } f(-z) A f(z) \frac{dz}{z^2} . \end{aligned}$$

This Hamiltonian is a quadratic function on \({{\mathcal {V}}}\), and its quantization is defined via

$$\begin{aligned} \widehat{p_i p_j} = \epsilon ^2\frac{\partial ^2}{\partial q_i \partial q_j} ,\quad \widehat{p_i q_j} = q_j \frac{\partial }{\partial q_i} , \quad \widehat{q_i q_j} = \frac{1}{\epsilon ^2} q_i q_j . \end{aligned}$$

Denote the quantization of \(H_{A}\) by \({\widehat{A}}\). We have, for any two infinitesimal symplectic transformations AB,

$$\begin{aligned} \Bigl [{\widehat{A}} , {\widehat{B}}\Bigr ] = \widehat{[A, B]}+{{\mathcal {C}}}\left( H_A , H_B\right) , \end{aligned}$$

where \({{\mathcal {C}}}\) is the so-called 2-cocycle term satisfying

$$\begin{aligned} {{\mathcal {C}}}(p_ip_j, q_k q_l) = -{{\mathcal {C}}}(q_k q_l, p_i p_j) = \delta _{i,k} \delta _{j,l}+\delta _{i,l} \delta _{j,k} , \end{aligned}$$

and \({{\mathcal {C}}}=0\) for all other pairs of quadratic monomials in pq.

Define the operators \(\ell _k\) by

$$\begin{aligned} \ell _k = (-1)^{k+1} z^{3/2} \partial _z^{k+1} z^{-1/2} ,\quad k\ge -1 . \end{aligned}$$
(A.1)

Then we have

Lemma A.1

([22]). The operators \(\ell _k\) are infinitesimal symplectic transformations on \({{\mathcal {V}}}\), and their quantizations yield the Virasoro operators defined in (2.5)–(2.7) as follows:

$$\begin{aligned} L_k \left( \epsilon ^{-1}{\mathbf{t}}, \epsilon \partial /\partial {\mathbf{t}}\right) = \left. \widehat{\ell _k}\right| _{q_i\mapsto t_i, \partial _{q_i} \mapsto \partial _{t_i}, i\ge 0} + \frac{\delta _{k,0}}{16} , \quad k\ge -1. \end{aligned}$$

Lemma A.2

([22]). The multiplication operators \(z^{1-2j}, j\ge 1\) are infinitesimal symplectic transformations on \({{\mathcal {V}}}\), and the operators \(D_j, j\ge 1\) defined in (2.2) can be represented as

$$\begin{aligned} D_j = \left. \widehat{z^{1-2j}}\right| _{q_i\mapsto t_i, \partial _{q_i} \mapsto \partial _{t_i}, i\ge 0}. \end{aligned}$$
(A.2)

Consider now the quantization \({{\widehat{\Phi }}}\) of the symplectomorphism \(f(z)\mapsto \Phi (z) f(z)\), where the function \(\Phi (z)\) was defined by equation (2.19). It is defined by

$$\begin{aligned} {\widehat{\Phi }} =\left. e^{\widehat{\log \Phi (z)}}\right| _{q_i\mapsto t_i, \partial _{q_i} \mapsto \partial _{t_i}, i\ge 0} , \end{aligned}$$

where we replace \(\log \Phi (z)\) by its asymptotic expansion as \(|z|\rightarrow \infty \), \(\mathrm{Re}(z)\ne 0\). The latter has the form, up to an inessential piecewise constant term

$$\begin{aligned} \log \Phi (z)\sim \sum _{k=1}^\infty \frac{B_{2k}}{k(2k-1)} \frac{2^{-2k}-1}{z^{2k-1}} . \end{aligned}$$

By using (2.2) we arrive at the following lemma.

Lemma A.3

We have

$$\begin{aligned} {\widehat{\Phi }} = e^{\sum _{k=1}^\infty \frac{B_{2k}}{k(2k-1)} \left( 2^{-2k}-1\right) D_k}. \end{aligned}$$
(A.3)

Remark A.4

The function \(\Phi (z)\) is analytic near \(z=0\), \(\Phi (0)=1\) and

$$\begin{aligned} \log \Phi (z) = -2z \log 2 - 2 \sum _{k=1}^\infty \frac{2^{2k}-1}{2k+1} \zeta (2k+1) \, z^{2k+1} , \quad |z|<\frac{1}{2} . \end{aligned}$$
(A.4)

One can define another quantum operator \({{\hat{\Phi }}}_0\) by quantizing the series (A.4). Geometric interpretation of this quantum operator remains an interesting open question.

Appendix B: List of Symbols

\(t_i\) :

indeterminate tracing the \(i{\mathrm{th}}\) power of \(\psi \)-class (aka coupling constant), \(i\ge 0\)

\({{\tilde{t}}}_i\) :

\({{\tilde{t}}}_i=t_i-\delta _{i,1}\), \(i\ge 0\)

\(s_j\) :

the coupling constant to the \(j{\mathrm{th}}\) power of Hermitian matrix, \(j\ge 1\)

\({{\bar{s}}}_{k}\) :

\({{\bar{s}}}_{k} = \left( {\begin{array}{c}2k\\ k\end{array}}\right) s_{2k}\), \(k\ge 1\)

\({{\tilde{s}}}_{2k}\) :

\({{\tilde{s}}}_{2k} = s_{2k} - \tfrac{1}{2} \delta _{k,1}\), \(k\ge 1\)

Z :

the partition function of intersection numbers of \(\psi \)-classes

\(Z_\mathrm{cubic}\) :

the special cubic Hodge partition function

\(Z_{\mathrm{GUE}}\) :

the GUE partition function

\(Z_\mathrm{even}\) :

the GUE partition function with even couplings

\({\widetilde{Z}}\) :

the modified GUE partition function with even couplings

\({{\mathcal {H}}}_\mathrm{cubic}\) :

the special cubic Hodge free energy

\( {{\mathcal {F}}}_{\mathrm{GUE}}\) :

the GUE free energy

\({{\mathcal {F}}}_\mathrm{even}\) :

the GUE free energy with even couplings

\(\widetilde{{{\mathcal {F}}}}\) :

the modified GUE free energy with even couplings

\({{\mathcal {H}}}_g\) :

the genus g part of the the special cubic Hodge free energy

\({{\mathcal {F}}}_g\) :

the genus g part of the GUE free energy with even couplings

\({{\widetilde{{{\mathcal {F}}}}}}_g\) :

the genus g part of the modified GUE free energy with even couplings

\(H_g\) :

the genus g part of the special cubic Hodge free energy in jets, \(g\ge 1\)

\(F_g\) :

the genus g part of the GUE free energy with even couplings in jets, \(g\ge 1\)

v :

genus zero Witten–Kontsevich solution to the KdV hierarchy

u :

genus zero GUE solution to the discrete KdV hierarchy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovin, B., Liu, SQ., Yang, D. et al. Hodge–GUE Correspondence and the Discrete KdV Equation. Commun. Math. Phys. 379, 461–490 (2020). https://doi.org/10.1007/s00220-020-03846-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03846-6

Navigation