Skip to main content
Log in

Fractional Volterra hierarchy

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The generating function of cubic Hodge integrals satisfying the local Calabi–Yau condition is conjectured to be a tau function of a new integrable system which can be regarded as a fractional generalization of the Volterra lattice hierarchy, so we name it the fractional Volterra hierarchy. In this paper, we give the definition of this integrable hierarchy in terms of Lax pair and Hamiltonian formalisms, construct its tau functions, and present its multi-soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buryak, A.: Dubrovin–Zhang hierarchy for the Hodge integrals. Commun. Number Theory Phys. 9, 239–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buryak, A.: ILW equation for the Hodge integrals revisited. Math. Res. Lett. 23, 675–683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlet, G.: The extended bigraded Toda hierarchy. J. Phys. A 39, 9411–9435 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Dubrovin, B., Yang, D.: Private communications (2016)

  5. Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge-GUE correspondence and the discrete KdV equation, arXiv:1612.02333 [math-ph]

  7. Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gu, C., Hu, H., Zhou, Z.: Darboux Transformations in Integrable Systems. Theory and Their Applications to Geometry. Mathematical Physics Studies, vol. 26. Springer, Dordrecht (2005)

    Google Scholar 

  9. Hall, B.: Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. Graduate Texts in Mathematics, vol. 222, 2nd edn. Springer, Cham (2015)

    Book  Google Scholar 

  10. Hu, X.-B., Zhao, J.-X., Li, C.-X.: Matrix integrals and several integrable differential-difference systems. J. Phys. Soc. Jpn. 75, 054003 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Inoue, R., Hikami, K.: Construction of soliton cellular automaton from the vertex model-the discrete 2D Toda equation and the Bogoyavlensky lattice. J. Phys. A 32, 6853–6868 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kupershmidt, B.A.: Discrete Lax equations and differential-difference calculus. Astérisque No. 123 (1985)

  13. Liu, C.-C.M., Liu, K., Zhou, J.: A proof of a conjecture of Mariño–Vafa on Hodge integrals. J. Differ. Geom. 65, 289–340 (2003)

    Article  MATH  Google Scholar 

  14. Liu, S.-Q., Petrov, F., Dotsenko, V.: Two combinatorial identities. Math Overflow. http://mathoverflow.net/questions/261414

  15. Mariño, M., Vafa, C.: Framed knots at large N. In: Adam, A., Morava, J., Ruan, Y. (eds) Orbifolds in Mathematics and Physics: Proceedings of a Conference on Mathematical Aspects of Orbifold String Theory May 4–8, 2001, University of Wisconsin, Madison, WI. Contemporary Mathematics, vol. 310, pp. 185–204. American Mathematical Society, Providence, RI (2002)

  16. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  17. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol. 36, pp. 271–328. Birkhäuser, Boston, MA (1983)

  18. Okounkov, A., Pandharipande, R.: Hodge integrals and invariants of the unknot. Geom. Topol. 8, 675–699 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smirnov, S.V.: Semidiscrete Toda lattices. Theor. Math. Phys. 172, 1217–1231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Okamoto, K. (ed) Group Representations and Systems of Differential Equations. Advanced Studies in Pure Mathematics, vol. 4. North-Holland/Kinokuniya, Amsterdam (1984)

Download references

Acknowledgements

We are grateful to Boris Dubrovin and Di Yang for sharing with us their discovery of the relation of the special cubic Hodge integrals with Eq. (1.8) and for helpful discussions. We would also like to thank Fedor Petrov and Vladimir Dotsenko for their proof of the four identities given in the end of Sect. 3, and the referee for the suggestion to simplify some proofs of the paper. This work is supported by NSFC No. 11371214 and No. 11471182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SQ., Zhang, Y. & Zhou, C. Fractional Volterra hierarchy. Lett Math Phys 108, 261–283 (2018). https://doi.org/10.1007/s11005-017-1006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1006-3

Keywords

Mathematics Subject Classification

Navigation