In this section we assume that
is a closed orientable hyperbolicFootnote 6 manifold of dimension \(n+1\).
Proposition 2.1
If \(n\ne 2\), then
$$\begin{aligned} m_{{\mathcal {L}}_X,X^\perp }(0) = b_1({\mathcal {M}}). \end{aligned}$$
Furthermore, the resonance zero has no Jordan block, and if \(n\ge 3\), then zero is the unique leading resonance and there is a spectral gap.Footnote 7
The first part of this result will be a central ingredient for Theorem 0.3. We will prove Proposition 2.1 using a quantum-classical correspondence. Such correspondences have recently been developed in various contexts (see
[DFG15] for compact hyperbolic manifolds,
[GHW18, Had18] for the convex co-compact setting, and
[GHW20] for generalizations to general rank one manifolds). We will use the general framework for vector bundles developed by the authors in
[KW19]. Additionally we use a Poisson transform due to Gaillard
[Gai86] and combining both ingredients allows us to construct an explicit bijection between the Pollicott-Ruelle resonant states in perpendicular one forms and the kernel of the Hodge Laplacian.
Remark 2.2
The dimension \(n+1=3\) is an exception where the multiplicity is given by \(m_{{\mathcal {L}}_X, X^\perp }(0)= 2b_1({\mathcal {M}})\). The deeper reason for this exception is that Gaillard’s Poisson transform is not bijective in this case. The exceptional case could also be treated with our methods by a more detailed analysis of Gaillard’s Poisson transform. This special case has however been worked out already in
[DGRS19, Proposition 7.7] by factorizations of zeta functions, so we refrain from taking on the additional effort.
A crucial role in these quantum-classical correspondences is played by the so-called (generalized) first band resonant states
$$\begin{aligned} {{\mathrm {Res}}}^{\mathrm {1st}}_{{\mathbf {X}},{\mathcal {V}}}(\lambda _0) :={{\mathrm {Res}}}_{{\mathbf {X}},{\mathcal {V}}}(\lambda _0) \cap \ker \mathcal U_-,~~~~\text {res} ^{\mathrm {1st}}_{{\mathbf {X}},{\mathcal {V}}}(\lambda _0) :=\text {res}_{{\mathbf {X}},{\mathcal {V}}}(\lambda _0) \cap \ker {\mathcal {U}}_-, \end{aligned}$$
(2.1)
where \({\mathcal {U}}_-\) is the horocycle operator which we will introduce below in (2.14). Roughly speaking, first band resonant states are resonant states that are constant in the unstable directions. In the process of proving Proposition 2.1 we observe in Sect. 2.1 that in any dimension \(n+1\), including \(n+1=3\), one has
$$\begin{aligned} {{\mathrm {Res}}}^{\mathrm {1st}}_{\mathcal L_X,X^\perp }(0)={{\mathrm {Res}}}_{{\mathcal {L}}_X,X^\perp }(0), \end{aligned}$$
(2.2)
which means that all resonant states of the resonance zero are first band resonant states, even though for \(n=1\) zero is not necessarily the leading resonance. Furthermore, we establish the following result:
Proposition 2.3
On any closed orientable hyperbolic manifold \({\mathcal {M}}\) of dimension \(n+1\) and for any \(p=0,\ldots , n\) with \(p\ne n/2\), one has
$$\begin{aligned} \dim _{{\mathbb {C}}}\mathrm {Res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_+}(0) =\dim _{{\mathbb {C}}}\mathrm {Res}^{\mathrm {1st}}_{\mathcal L_X,\Lambda ^p E^*_-}(-2p)=b_p({{\mathcal {M}}}). \end{aligned}$$
(2.3)
We consider this result to be of independent interest because it shows that also the higher Betti numbers can be recovered by considering Pollicott-Ruelle resonant states on certain vector bundles that are invariant under the horocycle transformation. Again the statement is obtained by constructing an explicit isomorphism onto the kernel of the Hodge Laplacian.
Description of the geometry of \({{\mathcal {M}}}\) in Lie-theoretic terms
Any closed orientable connected hyperbolic manifold \({\mathcal {M}}\) of dimension \(n+1\) can be written as a bi-quotient
$$\begin{aligned} {\mathcal {M}} =\Gamma \backslash {\mathbb {H}}^{n+1}= \Gamma \backslash G/ K, \end{aligned}$$
where \(G=\mathrm {SO}(n+1,1)_0\),Footnote 8\(K\cong \mathrm {SO}(n+1)\), and \(\Gamma \subset G\) is a cocompact torsion-free discrete subgroup. \({\mathcal {M}}\) is thus an example of a Riemannian locally symmetric space of rank one. There exists a very efficient Lie-theoretic language to describe the structure of \({\mathcal {M}}\), the co-sphere bundle \(S^*{\mathcal {M}}\), as well as the invariant vector bundles which we introduce in this subsection. For more details we refer the reader to
[GHW20, KW19] and for background information to the textbooks
[Kna02, Hel01]. In the following we shall introduce the required abstract language in a quite concrete way, tailored to the particular group \(G=\mathrm {SO}(n+1,1)_0\).
The Lie algebra \(\mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {so}}}(n+1,1)\) of G can be explicitly realized as a matrix algebra:
$$\begin{aligned} \mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {so}}}(n+1,1)&=\Big \{\begin{pmatrix}k &{} p\\ p^T &{} 0 \end{pmatrix}:k\in \mathbf{{\mathfrak {so}}}(n+1),\; p\in {{\mathbb {R}}}^{n+1} \Big \}\nonumber \\&=\Big \{\begin{pmatrix}k &{} 0\\ 0 &{} 0 \end{pmatrix}:k\in \mathbf{{\mathfrak {so}}}(n+1) \Big \}\oplus \Big \{\begin{pmatrix}0 &{} p\\ p^T &{} 0 \end{pmatrix}:p\in {{\mathbb {R}}}^{n+1} \Big \}\nonumber \\&=:\mathbf{{\mathfrak {k}}}\oplus \mathbf{{\mathfrak {p}}}, \end{aligned}$$
(2.4)
where \(\mathbf{{\mathfrak {so}}}(n+1)\) is the algebra of all real skew-symmetric matrices of size \(n+1\). The involution \(\theta :\mathbf{{\mathfrak {g}}}\rightarrow \mathbf{{\mathfrak {g}}}\) given by \(\theta X=-X^T\), \(X\in \mathbf{{\mathfrak {g}}}\), is called Cartan involution. The subspaces \(\mathbf{{\mathfrak {k}}}\) and \(\mathbf{{\mathfrak {p}}}\) are the eigenspaces of \(\theta \) with respect to the eigenvalues 1 and \(-1\), respectively. \(\mathbf{{\mathfrak {k}}}\) is the Lie algebra of the group
$$\begin{aligned} K:=\exp (\mathbf{{\mathfrak {k}}})\subset G, \end{aligned}$$
where \(\exp \) denotes the matrix exponential. We have \(K\cong \mathrm {SO}(n+1)\). The splitting \(\mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {k}}}\oplus \mathbf{{\mathfrak {p}}}\) is called Cartan decomposition. This decomposition is \(\mathrm {Ad}(K)\)-invariant, where \(\mathrm {Ad}(K)\) is the action of the matrix group K on the matrix algebra \(\mathbf{{\mathfrak {k}}}\) by conjugation.
The tangent bundle \(T{{\mathcal {M}}}=T(\Gamma \backslash G/K)\) can then be identified with the associated vector bundle \(\Gamma \backslash G\times _{\mathrm {Ad}(K)} \mathbf{{\mathfrak {p}}}\), and similarly we identify \(T^*{{\mathcal {M}}}= \Gamma \backslash G\times _{\mathrm {Ad}^*(K)} \mathbf{{\mathfrak {p}}}^*\), where \(\mathrm {Ad}^*(K)\) is the dual representation of \(\mathrm {Ad}(K)\).
Via the Killing form \({\mathfrak {B}}:\mathbf{{\mathfrak {g}}}\times \mathbf{{\mathfrak {g}}}\rightarrow {{\mathbb {R}}}\), which is given explicitly by \({\mathfrak {B}}(X,Y)=2n\, \mathrm {tr}(XY)\), and the Cartan involution \(\theta \) we define an \(\mathrm {Ad}(K)\)-invariant inner product \(\left\langle \cdot ,\cdot \right\rangle \) on \(\mathbf{{\mathfrak {g}}}\) by
$$\begin{aligned} \left\langle X,Y \right\rangle :=-(2n)^{-1}{\mathfrak {B}}(X,\theta Y)=\mathrm {tr}(XY^T),\qquad X,Y\in \mathbf{{\mathfrak {g}}}. \end{aligned}$$
The restriction of \(\left\langle \cdot ,\cdot \right\rangle \) to \(\mathbf{{\mathfrak {p}}}\times \mathbf{{\mathfrak {p}}}\) then defines a Riemannian metric of constant curvature \(-1\) on \({\mathcal {M}}\). We carry over the inner product to \(\mathbf{{\mathfrak {g}}}^*\) using the isomorphism \(\mathbf{{\mathfrak {g}}}\cong \mathbf{{\mathfrak {g}}}^*\) given by \(X\mapsto \left\langle X,\cdot \right\rangle \).
We next want to describe the structure of the co-sphere bundle \(S^*{\mathcal {M}}\) and the Anosov vector bundles \(E_{0/+/-}\). To this end, we note that there is a maximal one-dimensional abelian subalgebra \({\mathfrak {a}} \subset \mathbf{{\mathfrak {p}}}\), given explicitly by
$$\begin{aligned} \mathbf{{\mathfrak {a}}}=\Big \{\begin{pmatrix}0 &{} p\\ p^T &{} 0 \end{pmatrix}: p^T=(0,\ldots ,0,H),H\in {{\mathbb {R}}}\Big \}\subset \mathbf{{\mathfrak {g}}}. \end{aligned}$$
We will denote the element in \(\mathbf{{\mathfrak {a}}}\) for which \(H=1\) in the description above by \(H_0\) and we identify
$$\begin{aligned} \mathbf{{\mathfrak {a}}}\cong {{\mathbb {R}}}\end{aligned}$$
by mapping \(H_0\) to 1. Defining subspaces \(\mathbf{{\mathfrak {n}}}^\pm \subset \mathbf{{\mathfrak {g}}}\) by
$$\begin{aligned} \mathbf{{\mathfrak {n}}}^\pm :=\Bigg \{\begin{pmatrix}0 &{} v &{} \mp v\\ -v^T &{} 0 &{} 0\\ \mp v^T &{} 0 &{}0 \end{pmatrix}: v\in {{\mathbb {R}}}^n \Bigg \}, \end{aligned}$$
(2.5)
we see from (2.4) that one has two decompositions
$$\begin{aligned} \mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {k}}}\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^+= \mathbf{{\mathfrak {k}}}\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^-. \end{aligned}$$
They are called Iwasawa decompositions. The spaces \(\mathbf{{\mathfrak {n}}}^\pm \) are characterized by the property
$$\begin{aligned}{}[H_0,Y]=\pm Y\qquad \forall \; Y\in \mathbf{{\mathfrak {n}}}^\pm , \end{aligned}$$
(2.6)
and in fact they are the largest subspaces of \(\mathbf{{\mathfrak {g}}}\) with these properties. In more abstract terms, the spaces \(\mathbf{{\mathfrak {n}}}^\pm \) are the root spaces with respect to the roots \(\pm \alpha _0\), where \(\alpha _0\in \mathbf{{\mathfrak {a}}}^*\) is the element that maps \(H_0\) to 1. We will identify
$$\begin{aligned} \mathbf{{\mathfrak {n}}}^\pm \cong {{\mathbb {R}}}^n \end{aligned}$$
by mapping each matrix as in (2.5) to the vector v. Also on the group level there are two corresponding Iwasawa decompositions \(G=KAN^+= KAN^-.\) Here \(N^\pm :=\exp (\mathbf{{\mathfrak {n}}}^\pm )\subset G\) and \(A:=\exp (\mathbf{{\mathfrak {a}}})\subset G\) are the matrix subgroups with Lie algebras \(\mathbf{{\mathfrak {n}}}^\pm \) and \(\mathbf{{\mathfrak {a}}}\), respectively. For each group element \(g\in G\) we now have unique Iwasawa (\(+\)) and opposite Iwasawa (−) decompositions
$$\begin{aligned} \begin{aligned} g&=k^+(g)a^+(g)n^+(g)=k^+(g)\exp (H^+(g))n^+(g)\\&=k^-(g)a^-(g)n^-(g)=k^-(g)\exp (H^-(g))n^-(g), \end{aligned} \end{aligned}$$
(2.7)
where \(\exp (H^\pm (g))=a^\pm (g)\). In more concrete terms, this means that each matrix g in G can be written in a unique way as a product of three matrices in K, A, and \(N^\pm \), respectively. Assigning to each matrix in G these unique matrices provides us with maps
$$\begin{aligned} k^\pm : G\rightarrow K,\qquad a^\pm : G\rightarrow A,\qquad H^\pm : G\rightarrow \mathbf{{\mathfrak {a}}},\qquad n^\pm : G\rightarrow N^\pm . \end{aligned}$$
(2.8)
In addition, we define the group
$$\begin{aligned} M:=\{m\in K:[m,a]=0\;\forall \; a\in A\}=\{m\in K:\mathrm {Ad}(m)(H)=0\;\forall \; H\in \mathbf{{\mathfrak {a}}}\}\subset K \end{aligned}$$
and let \(\mathbf{{\mathfrak {m}}}\) be the Lie algebra of M. Explicitly, we have
$$\begin{aligned} \mathbf{{\mathfrak {m}}}=\Bigg \{\begin{pmatrix}m &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{}0 \end{pmatrix}: m\in \mathbf{{\mathfrak {so}}}(n) \Bigg \}\subset \mathbf{{\mathfrak {k}}},\qquad M=\exp (\mathbf{{\mathfrak {m}}})\cong \mathrm {SO}(n). \end{aligned}$$
The groups \(N^\pm \) are normalized by A and M. In fact, when identifying \(\mathbf{{\mathfrak {n}}}^\pm \cong {{\mathbb {R}}}^n\) as above, then the \(\mathrm {Ad}(M)\)-action on \(\mathbf{{\mathfrak {n}}}^\pm \cong {{\mathbb {R}}}^n\) is just the defining representation of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\). We have the so-called Bruhat decomposition
$$\begin{aligned} \mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {m}}}\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {n}}}^- \end{aligned}$$
(2.9)
which turns out to be invariant under the \(\mathrm {Ad}(M)\)-action.
The co-sphere bundle \(S^*{\mathcal {M}}\) can be identified with \(\Gamma \backslash G/M\). Indeed, the element \(\alpha _0\in \mathbf{{\mathfrak {a}}}^*\subset \mathbf{{\mathfrak {p}}}^*\) introduced above fulfills \(\left\| \alpha _0 \right\| =1\) and
$$\begin{aligned} \Gamma \backslash G/M\ni \Gamma gM\mapsto [\Gamma g,\alpha _0]\in S^*{\mathcal {M}}\subset T^*{{\mathcal {M}}}=\Gamma \backslash G\times _{\mathrm {Ad}^*(K)} \mathbf{{\mathfrak {p}}}^*\end{aligned}$$
is a well-defined diffeomorphism. The Lie group \(A\cong {{\mathbb {R}}}\) acts from the right on \(\Gamma \backslash G/M\) because it commutes by definition with M, and this action precisely coincides with the geodesic flow. In particular, the geodesic vector field \(X\in \Gamma ^\infty (T(S^*{{\mathcal {M}}}))\) corresponds to the constant function \({\bar{X}}:G\rightarrow \mathbf{{\mathfrak {a}}}\) with \({\bar{X}}(g)=H_0\) for all \(g\in G\). Furthermore, the tangent bundle of \(S^*{\mathcal {M}}\) can be identified as follows:
$$\begin{aligned} T(S^*{\mathcal {M}})= & {} \Gamma \backslash G\times _{\mathrm {Ad}(M)} (\mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^+ \oplus \mathbf{{\mathfrak {n}}}^-)\nonumber \\= & {} {{\mathbb {R}}}X\oplus \underbrace{\Gamma \backslash G\times _{\mathrm {Ad}(M)}\mathbf{{\mathfrak {n}}}^+}_{=E_+}\oplus \underbrace{\Gamma \backslash G\times _{\mathrm {Ad}(M)}\mathbf{{\mathfrak {n}}}^-}_{=E_-}. \end{aligned}$$
(2.10)
There is an analogous identification of \(T^*(S^*{\mathcal {M}})\). The Anosov stable and unstable bundles \(E_\pm \) can be described more concretely using their lifts \({\widetilde{E}}_\pm \) to the frame bundle \(F{{\mathcal {M}}}=\Gamma \backslash G\) along the M-orbit projection \(F{{\mathcal {M}}}=\Gamma \backslash G\rightarrow \Gamma \backslash G/M=S{{\mathcal {M}}}\): Choosing an orthonormal basis \(U^\pm _1,\ldots ,U^\pm _n\) of \(\mathbf{{\mathfrak {n}}}^\pm \), the constant function \(G\rightarrow \mathbf{{\mathfrak {n}}}^\pm \) with value \(U^\pm _j\) defines a nowhere-vanishing vector field on \(F{\mathcal {M}}\), denoted also by \(U^\pm _j\), and one has
$$\begin{aligned} \widetilde{E}_\pm =\mathrm {span}_{{{\mathbb {R}}}}(U^\pm _1,\ldots ,U^\pm _n). \end{aligned}$$
(2.11)
The boundary at infinity of the hyperbolic space \({\mathbb {H}}^{n+1}=G/K\) is diffeomorphic to the sphere \(S^{n}\) and can be realized as
$$\begin{aligned} \partial _{\infty }{\mathbb {H}}^{n+1}=K/M=\mathrm {SO}(n+1)/\mathrm {SO}(n)\cong S^{n}. \end{aligned}$$
Consequently, the tangent bundle of \(\partial _{\infty }{\mathbb {H}}^{n+1}\) can be identified with
$$\begin{aligned} T(K/M)=K\times _{\mathrm {Ad}(M)}\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}, \end{aligned}$$
where \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\subset \mathbf{{\mathfrak {k}}}\) denotes the orthogonal complement of \(\mathbf{{\mathfrak {m}}}\) in \(\mathbf{{\mathfrak {k}}}\), given explicitly by
$$\begin{aligned} \mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}=\Bigg \{\begin{pmatrix}0 &{} v &{} 0\\ -v^T &{} 0 &{} 0\\ 0 &{} 0 &{}0 \end{pmatrix}: v\in {{\mathbb {R}}}^n \Bigg \}. \end{aligned}$$
We can identify \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\cong {{\mathbb {R}}}^n\) by mapping each matrix as above to v. The restriction of the representation \(\mathrm {Ad}(M)\) to \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\) is then just the defining representation of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\).
In view of these identifications all vector bundles over \(S^*{\mathcal {M}}\) of interest in the following are associated vector bundles of the form \({{\mathcal {V}}}_\tau :=G\times _\tau V\) with respect to some finite-dimensional complex M-representation \((\tau ,V)\).
As all our homogenous spaces are reductive there always exists a canonical connection that we denote by
$$\begin{aligned} \nabla : \Gamma ^\infty ({{\mathcal {V}}}_\tau )\rightarrow \Gamma ^\infty ({{\mathcal {V}}}_\tau \otimes T^*(S^*{\mathcal {M}})). \end{aligned}$$
(2.12)
To describe how \(\nabla \) is defined, let us regard a section \(s\in \Gamma ^\infty ({{\mathcal {V}}}_\tau )\) as a right-M-equivariant function \(\bar{s}\in \mathrm{C^{\infty }}(\Gamma \backslash G,V)\). Moreover, by (2.10) we regard a vector field \({{\mathfrak {X}}}\in \Gamma ^\infty (T(S^*{\mathcal {M}}))\) as a right-M-equivariant function \({\bar{{{\mathfrak {X}}}}}\in \mathrm{C^{\infty }}(\Gamma \backslash G,\mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {a}}}\oplus {\mathbf{{\mathfrak {n}}}^-})\), that is, \({\bar{{{\mathfrak {X}}}}}(\Gamma gm)=\mathrm {Ad}(m^{-1}){\bar{{{\mathfrak {X}}}}}(\Gamma g)\) for every \(m\in M\). Then \(\nabla \) is defined by the covariant derivative
$$\begin{aligned} \begin{aligned} \nabla _{{{\mathfrak {X}}}}(s)(\Gamma gM):=\frac{d}{dt}\Big |_{t=0}{\bar{s}}\big (\Gamma ge^{t{\bar{{{\mathfrak {X}}}}}(\Gamma g)}\big ). \end{aligned} \end{aligned}$$
(2.13)
Horocycle operators
Horocycle operators have been introduced in
[DFG15] as a crucial tool for establishing quantum-classical correspondences. We already mentioned them in the definition of the first band resonant states (2.1) in the introduction. They are defined as follows: Let \(({\mathcal {V}},\nabla )\) be a vector bundle over \(S^*{{\mathcal {M}}}\) with a connection \(\nabla \) and denote by \(\widetilde{\text {pr}}_{E^*_-}:\Gamma ^\infty ({\mathcal {V}}\otimes T^*(S^*{{\mathcal {M}}}))\rightarrow \Gamma ^\infty ({\mathcal {V}}\otimes E^*_-)\) the map induced by the fiber-wise orthogonal projection \(\text {pr}_{E^*_-}:T^*(S^*{\mathcal {M}}) \rightarrow E^*_-\) onto the subbundle \(E^*_-\subset T^*(S^*{\mathcal {M}})\). Then we define the horocyle operator \({\mathcal {U}}_-\) of \(({\mathcal {V}},\nabla )\) by composing the connection \(\nabla : \Gamma ^\infty ({\mathcal {V}}) \rightarrow \Gamma ^\infty ({\mathcal {V}}\otimes T^*(S^*{{\mathcal {M}}}))\) with \(\widetilde{\text {pr}}_{E^*_-}\):
$$\begin{aligned} {\mathcal {U}}_-:= \widetilde{\text {pr}}_{E^*_-} \circ \nabla : \Gamma ^\infty ({\mathcal {V}}) \rightarrow \Gamma ^\infty ({\mathcal {V}}\otimes E^*_-). \end{aligned}$$
(2.14)
By duality, \({\mathcal {U}}_-\) extends to distributional sections. In the concrete language of (2.11) we can express \({\mathcal {U}}_-\) as follows: If \(\widetilde{\mathcal {V}}=\pi ^*{\mathcal {V}}\) is the lift of \({\mathcal {V}}\) to the frame bundle, i.e., the pullback bundle with respect to the M-orbit projection \(\pi :F{{\mathcal {M}}}=\Gamma \backslash G\rightarrow \Gamma \backslash G/M=S{{\mathcal {M}}}\) and if \({\tilde{u}}\in \Gamma ^\infty (\widetilde{\mathcal {V}})\) is the lift of a section \(u\in \Gamma ^\infty ({\mathcal {V}})\), then the lift of the section \(\mathcal U_- u\) to the bundle \( \widetilde{{\mathcal {V}}\otimes E^*_-}\cong \widetilde{\mathcal {V}}\otimes {\widetilde{E}}^*_-\) is given by
$$\begin{aligned} \widetilde{{\mathcal {U}}_- u}=\sum _{j=1}^n\widetilde{\nabla }_{U_j^-}{\tilde{u}}\otimes (U^-_j)^*, \end{aligned}$$
where \((U^-_j)^*\in \Gamma ^\infty ({\widetilde{E}}_-^*)\) is the dual vector field of \(U^-_j\) and \({\widetilde{\nabla }}=\pi ^*\nabla \) the lifted (i.e., pullback) connection on \({\widetilde{{{\mathcal {V}}}}}\).
As already stated in (2.1), the so-called first band resonant states are defined as those resonant states that are annihilated by \({\mathcal {U}}_-\). The main technical feature of \({\mathcal {U}}_-\) is that it obeys the commutation relation
$$\begin{aligned} \nabla _X{\mathcal {U}}_-- {\mathcal {U}}_- \nabla _X =\mathcal U_-. \end{aligned}$$
(2.15)
This is a consequence of the commutation relations (2.6), the definition (2.13) of the covariant derivative, and the observation from Sect. 2.1 that the geodesic vector field X corresponds to the constant function \({\bar{X}}:G\rightarrow \mathbf{{\mathfrak {a}}}\) with value \(H_0\). If \(u\in {{\mathrm {Res}}}_{\nabla _X,{\mathcal {V}}}(\lambda )\) for some \(\lambda \in {{\mathbb {C}}}\) and \(J\in {{\mathbb {N}}}\) is such that \((\nabla _X+\lambda )^Ju=0\), then (2.15) implies
$$\begin{aligned} (\nabla _X+\lambda )^J\mathcal U_-u= & {} (\nabla _X+\lambda )^{J-1}(\nabla _X+\lambda )\mathcal U_-u\\= & {} (\nabla _X+\lambda )^{J-1}\mathcal U_-(\nabla _X+\lambda +1)u=\cdots ={\mathcal {U}}_-(\nabla _X+\lambda +1)^J u, \end{aligned}$$
which proves the following very useful shifting property of the horocycle operator \({\mathcal {U}}_-\):
$$\begin{aligned} \mathcal U_-\big (\mathrm {Res}_{\nabla _X,{\mathcal {V}}}(\lambda )\big )\subset {{\mathrm {Res}}}_{\nabla _X,{\mathcal {V}}\otimes E^*_-}(\lambda +1),\qquad {\mathcal {U}}_-\big (\mathrm {res}_{\nabla _X,\mathcal V}(\lambda )\big )\subset \mathrm {res}_{\nabla _X,{\mathcal {V}}\otimes E^*_-}(\lambda +1).\nonumber \\ \end{aligned}$$
(2.16)
First band resonant states and principal series representations
As already mentioned above, the homogeneous space \(K/M \cong S^{n}\) can be regarded as the boundary at infinity of the Riemannian symmetric space \(G/K = {\mathbb {H}}^{n+1}\) and using the Iwasawa projection we can define a left-G-action
$$\begin{aligned} g(kM):=k^-(g k)M,\qquad g \in G,\;k\in K. \end{aligned}$$
(2.17)
Given a finite-dimensional complex M-representation \((\tau , V)\) we define the boundary vector bundle
$$\begin{aligned} {{{\mathcal {V}}}^{\mathcal {B}}_{\tau }} =(K\times _{\tau } V,\pi _{{{\mathcal {V}}}^{\mathcal {B}}_{\tau }}),\qquad \pi _{{{\mathcal {V}}}^{\mathcal {B}}_{\tau }}([k,v])=kM. \end{aligned}$$
The total space \(K\times _{\tau } V\) of \({{\mathcal {V}}}^{\mathcal {B}}_{\tau }\) carries the G-action
$$\begin{aligned} g[k,v]:=[k^-(gk),v],\qquad g\in G,\;k\in K, \end{aligned}$$
(2.18)
that lifts the G-action (2.17) on the base space K/M. Consequently, we get an induced action on smooth sections:
$$\begin{aligned} (g s)(kM):={g}\big (s\big (g^{-1}(kM)\big )\big ),\qquad s\in \Gamma ^\infty ({{\mathcal {V}}}^{\mathcal {B}}_{\tau }),\;g\in G. \end{aligned}$$
(2.19)
If we consider a section \(s\in \Gamma ^\infty ({{\mathcal {V}}}^{\mathcal {B}}_{\tau })\) as a right-M-equivariant smooth function \({\bar{s}}:K\rightarrow V\), the action (2.19) corresponds to assigning to \(\bar{s}\) for any \(g\in G\) the right-M-equivariant smooth function \(\overline{g s}:K\rightarrow V\) given by
$$\begin{aligned} {\overline{gs}}(k)={\bar{s}}(k^-(g^{-1}k)),\qquad g\in G,\;k\in K. \end{aligned}$$
(2.20)
To describe how the principal series representation of G associated to an M-representation \(\tau \) and a parameter \(\lambda \in {{\mathbb {C}}}\) acts on smooth sections of \({\mathcal {V}}_\tau ^{{\mathcal {B}}}\), let us regard a section \(s\in \Gamma ^\infty (\mathcal V_\tau ^{{\mathcal {B}}})\) as a right-M-equivariant function \({\bar{s}}\in \mathrm{C^{\infty }}(K,V)\). We then setFootnote 9
$$\begin{aligned} \overline{\pi ^{\lambda }_{\tau }(g)s}(k):=e^{(\lambda + n/2)H^-(g^{-1}k)}{\bar{s}}(k^{-}(g^{-1}k)),\quad s\in \Gamma ^\infty ({{\mathcal {V}}}^{{\mathcal {B}}}_\tau ),\; kM\in K/M.\qquad \end{aligned}$$
(2.21)
This representation extends by continuity to a representation \(\pi ^{\lambda }_{\tau }:G\rightarrow \mathrm {End}({{\mathcal {D}}}'(K/M,{{\mathcal {V}}}^{\mathcal {B}}_{\tau }))\). One has the following important relation between first band resonant states and the \(\Gamma \)-invariant distributional sections of the boundary vector bundle with respect to the principal series representation \(\pi ^{-\lambda -n/2}_\tau \).
Proposition 2.4
(
[KW19, Lemma 2.15]) For each \(\lambda \in {{\mathbb {C}}}\) there is an explicit isomorphism
$$\begin{aligned} Q_{\lambda }:\mathrm{res}^{\mathrm {1st}}_{\nabla _X,{{\mathcal {V}}}_{\tau }}(\lambda ){\mathop {\longrightarrow }\limits ^{\cong }}{^\Gamma }\big ({{\mathcal {D}}}'(K/M,{{\mathcal {V}}}^{\mathcal {B}}_{\tau }), \pi ^{-\lambda -n/2}_\tau \big ) \end{aligned}$$
(2.22)
onto the space of all distributional sections u of \({{\mathcal {V}}}^{\mathcal {B}}_{\tau }\) with \( \pi ^{-\lambda -n/2}_\tau (\gamma )u=u\) for every \(\gamma \in \Gamma \).
Relating resonances of the Lie- and covariant derivatives
Proposition 2.4 provides a powerful way to handle first band resonant states of the covariant derivative \(\nabla _X\) along the geodesic vector field. In Propositions 2.1 and 2.3 we are however interested in resonant states of the Lie derivative. Therefore we have to relate these states:
Lemma 2.5
For \(p\in \{0,1,2,\ldots \}\), suppose that \(\tau \) is a subrepresentation of \(\otimes ^p(\mathrm {Ad}(M)|_{\mathbf{{\mathfrak {n}}}^\pm })\). Then the covariant derivative and the Lie derivative along the geodesic vector field X, acting on smooth sections of \({{\mathcal {V}}}_{\tau }\), are related by
$$\begin{aligned} \mathcal {L}_{X} = \nabla _{X} \mp p\,\mathrm {id}_{\Gamma ^\infty ({{\mathcal {V}}}_{\tau })}. \end{aligned}$$
Consequently, one has for every \(\lambda \in {{\mathbb {C}}}\) and \(p\in {{\mathbb {N}}}\)
$$\begin{aligned} \mathrm {Res}_{{\mathcal {L}}_X,{{\mathcal {V}}}_\tau }(\lambda )=\mathrm {Res}_{\nabla _X, {{\mathcal {V}}}_\tau }(\lambda \mp p) ~~ \mathrm{and } ~~ \mathrm {res}_{\mathcal L_X,{{\mathcal {V}}}_\tau }(\lambda )=\mathrm {res}_{\nabla _X, {{\mathcal {V}}}_\tau }(\lambda \mp p). \end{aligned}$$
(2.23)
Proof
Recall that the geodesic flow on \(S^*(\Gamma \backslash G/K)=\Gamma \backslash G/M\) is given by
$$\begin{aligned} \varphi _t(\Gamma gM)=\Gamma ge^{tH_0}M,\qquad t\in {{\mathbb {R}}}. \end{aligned}$$
(2.24)
Its derivative \(d\varphi _t:T(\Gamma \backslash G/M)=\Gamma \backslash G\times _{\mathrm {Ad}(M)}(\mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^-)\rightarrow \Gamma \backslash G\times _{\mathrm {Ad}(M)}(\mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^-)\) reads
$$\begin{aligned} d\varphi _t(\Gamma gM)([\Gamma g M, v])= & {} [\Gamma g M, \mathrm {Ad}(e^{-tH_0})v]\nonumber \\&\in \Gamma \backslash G\times _{\mathrm {Ad}(M)}(\mathbf {{\mathfrak {n}}}^+\oplus \mathbf {{\mathfrak {a}}}\oplus \mathbf {{\mathfrak {n}}}^-),\qquad t\in {{\mathbb {R}}},\;[\Gamma g M, v]. \nonumber \\ \end{aligned}$$
(2.25)
Any vector \(v\in \mathbf{{\mathfrak {n}}}^\pm \) is an eigenvector of the adjoint action:
$$\begin{aligned} \mathrm {Ad}(e^{-tH_0})v =e^{-t\mathrm {ad}(H_0)}v =e^{\mp t} v. \end{aligned}$$
(2.26)
Let now \(\omega \in \Gamma ^\infty ({{\mathcal {V}}}_\tau )\), identified with a left-\(\Gamma \)-, right-M-equivariant function \({\overline{\omega }}: G\rightarrow V\), where \(V\subset \otimes ^p (\mathbf{{\mathfrak {n}}}^\pm )\). Considering \(\varphi _t\) as a left-\(\Gamma \)-, right-M-equivariant map \(\bar{\varphi }_t: G\rightarrow G\), let \(\overline{\varphi _t^*\omega }: G\rightarrow V\) be the left-\(\Gamma \)-, right-M-equivariant function corresponding to \(\varphi _t^*\omega \in \Gamma ^\infty ({{\mathcal {V}}}_\tau )\). Then we get with (2.26) for \(g\in G\) and \(v_1,\ldots ,v_p\in \mathbf{{\mathfrak {n}}}^\pm \):
$$\begin{aligned} \overline{\varphi _t^*\omega }(g)(v_1,\ldots ,v_p) =\bar{\omega }(ge^{tH_0})(e^{\mp t }v_1,\ldots ,e^{\mp t }v_p)=e^{\mp p t}{\bar{\omega }}(ge^{tH_0})(v_1,\ldots ,v_p). \end{aligned}$$
For the Lie derivative of \(\omega \) we then obtain with the analogous “\(\,\bar{\;}\bar{\;}\,\)”-notation and the product rule
$$\begin{aligned} \overline{\mathcal {L}_{X}\omega }(g)(v_1,\ldots ,v_p)&=\frac{d}{dt}\Big |_{t=0}\overline{\varphi _t^*\omega }(g)(v_1,\ldots ,v_p)\\&=\frac{d}{dt}\Big |_{t=0}\Big (e^{\mp p t }{\bar{\omega }}(ge^{tH_0})(v_1,\ldots ,v_p)\Big )\\&=\frac{d}{dt}\Big |_{t=0}{\bar{\omega }}(ge^{tH_0})(v_1,\ldots ,v_p) \mp p {\bar{\omega }}(g)(v_1,\ldots ,v_p) \\&=\overline{\nabla _{X}\omega }(g)(v_1,\ldots ,v_p) \mp p {\bar{\omega }}(g)(v_1,\ldots ,v_p). \end{aligned}$$
Here we recalled the definition (2.13) of the canonical covariant derivative. \(\square \)
Proof of Proposition 2.3
Let us collect what we have obtained so far: By Lemma 2.5
$$\begin{aligned} \mathrm {res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_+}(0) = \mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^p E^*_+}(-p) ~~ and ~~ \mathrm {res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_-}(-2p) = \mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^p E^*_-}(-p). \end{aligned}$$
As the adjoint action of M on \(\mathbf{{\mathfrak {n}}}^\pm \) is given by the defining representation of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\) we deduce from (2.10) that \(\Lambda ^p(E^*_\pm ) = \Gamma \backslash G\times _{\tau _p} \Lambda ^p({{\mathbb {R}}}^n)\) with \(\tau _p\) being the p-th exterior power of the standard action of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\). By Proposition 2.4 we can thus identify
$$\begin{aligned} \mathrm {res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_+}(0) \cong \mathrm {res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_-}(-2p) \cong {^\Gamma }\big ({{\mathcal {D}}}'(K/M,{{\mathcal {V}}}^{\mathcal {B}}_{\tau _p}), \pi ^{p-n/2}_{\tau _p}\big ). \end{aligned}$$
We now use a vector-valued Poisson transform. To this end, let \(\Delta _H = d\delta + \delta d\) be the Hodge Laplacian on \(\Omega ^p({\mathbb {H}}^{n+1})\).
Theorem 2.6
(Poisson transform for \(\Gamma \)-invariant p-forms) Let \(K=\mathrm {SO}(n+1)\), \(M=\mathrm {SO}(n)\), and let \(\tau _p\) be the p-th exterior power of the defining representation of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\). Then for any \(\lambda \in {{\mathbb {C}}}\) with \(\lambda \ne n-p\) and \(\lambda \ne n+1, n+2,\ldots \), there is an isomorphism of vector spaces
$$\begin{aligned} P_{\tau _p,\lambda }&: {^\Gamma }\big ({{\mathcal {D}}}'(K/M,{{\mathcal {V}}}^{\mathcal {B}}_{\tau _p}), \pi ^{\lambda -n/2}_{\tau _p}\big ) \rightarrow \big \{\omega \in \Omega ^p({{\mathcal {M}}}): \\&\quad \Delta _H \omega = (\lambda -p)(n-\lambda - p)\omega ,~\delta \omega =0\big \}. \end{aligned}$$
This result is due to Gaillard (see
[Gai86, Thm. 2’ c) and Thm. 3’], taking into account that \(\Gamma \)-invariant smooth forms are trivially slowly growing in Gaillard’s sense because \(\Gamma \) is co-compact) although it requires some work (see Sect. 2.7) to translate his statements into the form stated above that we can apply in our setting. For \(p\ne n/2\) the Poisson transform \(P_{\tau _p,p}\) is bijective and thus
$$\begin{aligned} {^\Gamma }\big ({{\mathcal {D}}}'(K/M,{{\mathcal {V}}}^{\mathcal {B}}_{\tau _p}), \pi ^{p-n/2}_{\tau _p}\big ) \cong \left\{ \omega \in \Omega ^p({{\mathcal {M}}}), \Delta _H\omega =0,\delta \omega =0\right\} . \end{aligned}$$
As on compact manifolds any harmonic form is co-closed, the right hand side is simply the kernel of the Hodge Laplacian and Hodge theory implies that its dimension equals the p-th Betti number of \({{\mathcal {M}}}\). We thus have shown
$$\begin{aligned} \dim \mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^p E^*_+}(-p) = \dim \mathrm {res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_-}(-2p) = b_p({\mathcal {M}}). \end{aligned}$$
Now using once more that \(p\ne n/2\)
[KW19, Theorem 6.2] implies that the resonance at \(-p\) of \(\nabla _X\) has no Jordan block and consequently
$$\begin{aligned} \dim \mathrm {Res}^{\mathrm {1st}}_{{\mathcal {L}}_X,\Lambda ^p E^*_+}(0)= & {} \dim \mathrm {Res}^{\mathrm {1st}}_{\mathcal L_X,\Lambda ^p E^*_-}(-2p)= \dim \mathrm {Res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^p E^*_+}(-p)\nonumber \\= & {} \dim \mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^p E^*_+}(-p) =b_p({{\mathcal {M}}}). \end{aligned}$$
(2.27)
This finishes the proof of Proposition 2.3.
Proof of Proposition 2.1
Let \(\lambda \in {{\mathbb {C}}}\). By the decomposition (1.2) and Lemma 2.5, we have
$$\begin{aligned} {{\mathrm {Res}}}_{{\mathcal {L}}_X,X^\perp }(\lambda )\cong \mathrm {Res}_{\mathcal L_X,E^*_+}(\lambda )\oplus \mathrm {Res}_{\mathcal L_X,E^*_-}(\lambda )=\mathrm {Res}_{\nabla _X, E^*_+}(\lambda -1)\oplus \mathrm {Res}_{\nabla _X,E^*_-}(\lambda +1). \end{aligned}$$
As \(\nabla _X\) is an antisymmetric operator in \(\mathrm{L}^2(E^*_-)\) there are no resonances of \(\nabla _X\) on \(E_-\) with positive real partFootnote 10, so if \(\mathrm {Re}\,\lambda >-1\) one has
$$\begin{aligned} {{\,\mathrm{Res}\,}}_{{\mathcal {L}}_X,X^\perp }(\lambda )\cong \mathrm {Res}_{\nabla _X, E^*_+}(\lambda -1). \end{aligned}$$
(2.28)
By the definition of first band resonant states (2.1) and the dimension formula for linear maps we conclude
$$\begin{aligned} \dim {{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1) = \dim {\mathrm {Res}}^{\mathrm {1st}}_{\nabla _X, E^*_+}(\lambda -1) + \dim \mathcal {U}_-\big ({{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1)\big ).\quad \end{aligned}$$
(2.29)
Regarding the statement on the leading resonance, we note that if \(n\ge 3\) and \(\mathrm {Re}\,\lambda >-1\), then by Proposition 2.4 and Theorem 2.6 there is an isomorphism
$$\begin{aligned} \mathrm {res}^{\mathrm {1st}}_{\nabla _X,E^*_+}(\lambda -1) \cong \{\omega \in \Gamma ^\infty (T^*{{\mathcal {M}}}): \Delta _H\omega =-\lambda (n+\lambda - 2)\omega , ~\delta \omega =0\}, \end{aligned}$$
(2.30)
where \(\Delta _H\) is the Hodge Laplacian on \({{\mathcal {M}}}\). When \(\mathrm {Re}\,\lambda > 1-\frac{n}{2}\), the eigenvalue \(-\lambda (n+\lambda - 2)\) is real and positive iff \(\lambda \in (1-\frac{n}{2},0]\) and if this does not hold the right hand side of (2.30) is the zero space. It follows for \(n\ge 3\) and \(\mathrm {Re}\,\lambda > 1-\frac{n}{2}\) that \({\mathrm {Res}}^{\mathrm {1st}}_{\nabla _X, E^*_+}(\lambda -1)=\{0\}\) unless \(\lambda \in (1-\frac{n}{2},0]\) because every Jordan block would contain at least one resonant state. Now, in view of Proposition 2.3, (2.27), and (2.29), it remains to prove \(\mathcal {U}_-({{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1)) = 0\) under the assumption that \(n \ne 2\) and \(\mathrm {Re}\,\lambda > -\delta \) for some small \(\delta >0\) to establish Proposition 2.1. Recall from (2.14) that \(\mathcal {U}_-({{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1)) \subset {\mathcal {D}}'({\mathcal {M}}, E^*_+\otimes E^ *_-)\). Further, by (2.16) one has
$$\begin{aligned} \mathcal {U}_-\big ({{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1)\big ) \subset {{\mathrm {Res}}}_{\nabla _X, E^*_+\otimes E^ *_-}(\lambda ). \end{aligned}$$
If \(\mathrm {Re}\,\lambda >0\), we immediately get the zero space on the right hand side as otherwise there would be resonances of \(\nabla _X\) with positive real part, which is impossible by the antisymmetry of \(\nabla _X\) in \(\mathrm{L}^2(E^*_+\otimes E^ *_-)\), cf. Footnote 10. We are left with the proof of \(\mathcal {U}_-({{\mathrm {Res}}}_{\nabla _X, E^*_+}(\lambda -1)) = 0\) for \(\mathrm {Re}\,\lambda \in (-\delta ,0]\) with some small \(\delta >0\). Another application of (2.16) and the absence of resonances of \(\nabla _X\) with positive real part due to antisymmetry implies
$$\begin{aligned} {{\mathrm {Res}}}_{\nabla _X, E^*_+\otimes E^ *_-}(\lambda ) = {{\mathrm {Res}}}^ {\mathrm {1st}}_{\nabla _X, E^*_+\otimes E^ *_-}(\lambda )\qquad \text{ if } \mathrm {Re}\,\lambda > -1. \end{aligned}$$
Using the quantum-classical correspondence once more we shall obtain a simple description of the latter spaces. To this end, note that the Cartan involution \(\theta |_{\mathbf{{\mathfrak {n}}}^+}:\mathbf{{\mathfrak {n}}}^+\rightarrow \mathbf{{\mathfrak {n}}}^-\) is an equivalence of representations \(\mathrm {Ad}(M)|_{\mathbf{{\mathfrak {n}}}^+}\sim \mathrm {Ad}(M)|_{\mathbf{{\mathfrak {n}}}^-}\) which induces an isomorphism \(E^*_+\cong E^*_-\) that is compatible with the connections on the two bundles. This in turn induces a connection-compatible isomorphism \(E^*_+\otimes E^*_-\cong E^*_-\otimes E^*_-\). As the covariant derivatives \(\nabla _X\) as well as the horocycle operators \({\mathcal {U}}_-\) are defined in terms of the respective connections, we conclude
$$\begin{aligned} {{\mathrm {Res}}}^{\mathrm {1st}}_{\nabla _X, E^*_+\otimes E^*_-}(\lambda )\cong {{\mathrm {Res}}}^{\mathrm {1st}}_{\nabla _X, E^*_-\otimes E^*_-}(\lambda ). \end{aligned}$$
Now let
be the Riemannian metric on \(S^*{\mathcal {M}}\) induced by the Sasaki metric on \(T^*{{\mathcal {M}}}\) with respect to the Riemannian metric on \({{\mathcal {M}}}\). The restriction of
to \(E_-\times E_-\) defines a smooth section of \(E^*_-\otimes E^*_-\).
If \(n=2\), then \(\Lambda ^2E^*_-\subset E^*_-\otimes E^*_-\) is the top-degree exterior power of \(E_-\) and hence trivialized by choosing an orientation form \( \Omega _{E_-}\) on \(E_-\). Choosing a non-zero element \(\Omega _0\in \Lambda ^2(\mathbf {{\mathfrak {n}^-}})^*\), we can define \( \Omega _{E_-}\) to be the smooth section of \(\Lambda ^2E^*_-=\Gamma \backslash G\times _{\Lambda ^2 \mathrm {Ad}^*(M)}\Lambda ^2(\mathbf {{\mathfrak {n}}}^-)^*\) induced by the constant function \(G\rightarrow \Lambda ^2(\mathbf {{\mathfrak {n}}}^-)^*\) with the value \(\Omega _0\).
Lemma 2.7
There is a number \(\delta >0\) such that for all \(\lambda \in {{\mathbb {C}}}\) with \(\mathrm {Re}\,\lambda \in (-\delta ,0]\) one has
Before proving this lemma let us see how it finishes the proof of Proposition 2.1 and (2.2): All that is left to prove is that if \({\mathcal {U}}_- s=c \eta \) with
, \(s\in {{\,\mathrm {Res}}}_{\nabla _X, E^*_+}(-1)\), and \(c\in {{\mathbb {C}}}\), then \(c=0\). This is easy:Footnote 11 If \({\mathcal {U}}_- s=c \eta \), then
$$\begin{aligned} \big <{\mathcal {U}}_- s,\eta \big >_{\mathrm {L}^2(S^*{{\mathcal {M}}},E^*_-\otimes E^*_-)}=c \Vert \eta \Vert _{\mathrm {L}^2(S^*{{\mathcal {M}}},E^*_-\otimes E^*_-)}^2. \end{aligned}$$
Thus, if \({\mathcal {U}}^*_-\) is the formal adjoint of \(\mathcal U_-\), we have
$$\begin{aligned} s({\mathcal {U}}^*_-(\eta ))=c \Vert \eta \Vert _{\mathrm {L}^2(S^*{{\mathcal {M}}},E^*_-\otimes E^*_-)}^2, \end{aligned}$$
(2.31)
where the left hand side is the pairing of the distributional section s with the smooth section \({\mathcal {U}}^*_-(\eta )\). In
[DFG15, Lemma 4.3] it is shown that \({\mathcal {U}}^*_-=-\mathcal T\circ {\mathcal {U}}_-\), \({\mathcal {T}}\) being the trace operator. The smooth section \(\eta \) vanishes under all covariant derivatives as it corresponds to the constant function \( G\rightarrow (\mathbf {{\mathfrak {n}}}^-)^*\otimes (\mathbf {{\mathfrak {n}}}^-)^* \) with either the value \(\left\langle \cdot ,\cdot \right\rangle |_{\mathbf {{\mathfrak {n}}}^-\times \mathbf {{\mathfrak {n}}}^-}\) or the value \(\Omega _0\). Therefore, we find \({\mathcal {U}}^*_-(\eta )=0\) and (2.31) implies \(c=0\).
It remains to prove Lemma 2.7:
Proof of Lemma 2.7
The tensor product \(E^*_-\otimes E^*_-\) splits into a sum of three subbundles according to
where \(S^2_0(E^*_-)\) denotes the trace-free symmetric tensors of rank 2. Note that
is a trivial line bundle and for \(n=1\) the other two bundles have rank zero. By the additivity of resonance multiplicities with respect to Whitney sums of vector bundles, we arrive at
Now we can consider the three summands on the right hand side individually. According to
[DFG15, Lemmas 4.7 and 5.6, Thm. 6], there is for \(\mathrm {Re}\,\lambda >-1\) an isomorphism
$$\begin{aligned} \text {res} ^{\mathrm {1st}}_{\nabla _X,S^2_0(E^*_-)}(\lambda )\cong \{\omega \in \Gamma ^\infty (S^2_0(T^*{{\mathcal {M}}})):\Delta _B\omega =-\lambda (n+\lambda )+2, ~\mathrm {div}\,\omega =0\},\nonumber \\ \end{aligned}$$
(2.33)
where \(\Delta _B\) is the Bochner Laplacian associated to the connection \(\nabla \). The eigenvalue \(-\lambda (n+\lambda )+2\) appearing here is a real number iff \(\mathrm {Im}\,\lambda =0\) or \(\mathrm {Re}\,\lambda =-\frac{n}{2}\), so for \(\mathrm {Re}\,\lambda >-\frac{1}{2}\) only numbers \(\lambda \in (-1/2,\infty )\) remain as possible candidates for a non-zero resonance space (2.33). In addition, a Weitzenböck type formula (see
[DFG15, Lemma 6.1]) says that the spectrum of \(\Delta _B\) acting on \(\Gamma ^\infty (S^2_0(T^*{{\mathcal {M}}}))\) is bounded from below by \(n+1\) which is strictly larger than \(-\lambda (n+\lambda )+2\) for \(n\ge 2\) and \(\lambda \in (-1/2,\infty )\). Consequently, for such n and \(\lambda \) the right hand side of (2.33) is the zero space and it follows that \({{\mathrm {Res}}}^{\mathrm {1st}}_{\nabla _X,S^2_0(E^*_-)}(\lambda )=\{0\}\) because every Jordan block would contain at least one resonant state. Turning to the second summand in (2.32), we apply once more Proposition 2.4 and Theorem 2.6 and obtain for \(n\ne 2\) an isomorphism
$$\begin{aligned} \mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^2E^*_-}(\lambda )\cong \{\omega \in \Gamma ^\infty (\Lambda ^2(T^*{{\mathcal {M}}})):\Delta _H\omega =-(\lambda +2)(n+\lambda -2), ~\delta \omega =0\}. \nonumber \\ \end{aligned}$$
(2.34)
For \(\mathrm {Re}\,\lambda >-1\) and \(n\ge 3\), the eigenvalue appearing here is either imaginary or negative, so the right hand side of (2.34) is the zero space (because \(\Delta _H\) is positive) and \(\mathrm {res}^{\mathrm {1st}}_{\nabla _X,\Lambda ^2E^*_-}(\lambda )=\{0\}\), \({{\mathrm {Res}}}^{\mathrm {1st}}_{\nabla _X,\Lambda ^2E^*_-}(\lambda )=\{0\}\).
When \(n=2\) we have \(\Lambda ^2E^*_-={{\mathbb {R}}}\Omega _{E_-}\). We can thus treat the second summand in (2.32) for \(n=2\) and the third summand in (2.32) for arbitrary n in the same way: As \(\nabla _X^J ({\tilde{c}}\Omega _{E_-})=(X^J\tilde{c})\,\Omega _{E_-}\) and
for each \(J\in {{\mathbb {N}}}\), we see that the distributions \(c,{\tilde{c}}\) have to be generalized scalar resonant states of a resonance \(\lambda \). In the scalar case we can however apply Liverani’s result on the spectral gap for contact Anosov flows
[Liv04] to see that zero is the unique leading resonance, with (generalized) resonant states the locally constant functions, and there is a spectral gap \(\delta >0\), so the proof is finished. \(\square \)
Gaillard’s Poisson transform
In his article
[Gai86] Gaillard considers the vector-valued Poisson transform to which we refer in Theorem 2.6 in the special case of \(\Gamma \)-invariant elements. His notation and conventions are however quite different from ours. In the following we will translate his results into the form stated in Theorem 2.6.
Gaillard proves in
[Gai86, Therems 2’, 3’] that slowly growing co-closed p-forms on \({\mathbb {H}}^{n+1}\) in appropriate eigenspaces of the Hodge Laplacian on \({\mathbb {H}}^{n+1}\) are the Poisson transforms of p-currents on K/M. When considering only p-forms on \({\mathbb {H}}^{n+1}\) that are \(\Gamma \)-invariant with respect to the action of \(\Gamma \) by pullbacks, which we identify with p-forms on the compact quotient \({{\mathcal {M}}}=\Gamma \backslash {\mathbb {H}}^{n+1}\) in Theorem 2.6, the slow growth condition becomes redundant. The remaining task is to relate Gaillard’s pullback G-actions on p-currents to our principal series representations of G on distributional sections.
We will denote the space of p-currents on K/M by \(\mathcal D_p'(K/M):=(\Omega ^{n-p}(K/M))'\), and we have the canonical dense embedding
. As G acts by diffeomorphisms on K/M the pullback action on \({\mathcal {D}}'_p(K/M)\) provides a G-representation.
Lemma 2.8
The pullback action of G on the space \({\mathcal {D}}'_p(K/M)\) of p-currents is equivalent to the principal series representation \(\pi ^{p-n/2}_{\tau _p}\) on \({{\mathcal {D}}}'(K/M,{\mathcal {V}}^{\mathcal B}_{\tau _p})\).
Proof
Denote by \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\subset \mathbf{{\mathfrak {k}}}\) the orthogonal complement of \(\mathbf{{\mathfrak {m}}}\) in \(\mathbf{{\mathfrak {k}}}\). Then M acts via the adjoint action on \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\). Recall from Sect. 2.1 that \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}} \cong {{\mathbb {R}}}^n\) and \(\text {Ad}(M)|_{\mathbf {{\mathfrak {m}}}^{\perp _\mathbf {{\mathfrak {k}}}}}\) is nothing but the standard action of \(\mathrm {SO}(n)\) on \({{\mathbb {R}}}^n\). In the following, we shall write simply \(\mathrm {Ad}(M)\) instead of \(\mathrm {Ad}(M)|_{\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}}\). Note that there is a canonical identification
$$\begin{aligned} K\times _{\mathrm {Ad}(M)}\mathbf {{\mathfrak {m}}}^{\perp _\mathbf {{\mathfrak {k}}}}\cong T(K/M)~ \text { by } ~[k,Y]\mapsto \frac{d}{dt}\Big |_{t=0} ke^{tY}M. \end{aligned}$$
(2.35)
Let \(g\in G\) and \(\alpha _g: kM \mapsto k_-(gk)M\) be the diffeomorphism on K/M given by the left-G-action, then the derivative \(d\alpha _g\) acts on T(K/M). In order to prove our lemma we have to determine how \(d\alpha _g\) acts on \(K\times _{\mathrm {Ad}(M)}\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\) under the identification (2.35). We have for \([k,Y] \in T(K/M)\)
$$\begin{aligned} \begin{aligned} d\alpha _g\left( [k,Y]\right)&= \frac{d}{dt}\Big |_{t=0} k^-(gke^{Yt}) M\\&\cong \left[ k^-(gk),\frac{d}{dt}\Big |_{t=0}k^-(gk)^{-1}k^-(gk\exp (tY))\right] \\&=\left[ k^-(gk),\frac{d}{dt}\Big |_{t=0}k^-\big (a^-(gk)n^-(gk)\exp (tY)n^-(gk)^{-1}a^-(gk)^{-1}\big )\right] \\&=\left[ k^-(gk),\mathrm {pr}_\mathbf{{\mathfrak {k}}}^-\mathrm {Ad}(a^-(gk)n^-(gk))(Y)\right] ,\end{aligned} \end{aligned}$$
(2.36)
where
$$\begin{aligned} \mathrm {pr}_\mathbf{{\mathfrak {k}}}^-={d} k^-|_e: \mathbf{{\mathfrak {g}}}\rightarrow \mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {k}}}\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^- \end{aligned}$$
(2.37)
is the projection onto \(\mathbf{{\mathfrak {k}}}\) defined by the opposite Iwasawa decomposition of \(\mathbf{{\mathfrak {g}}}\).
We can now proceed by studying for fixed \(g\in G\), \(k\in K\), \(Y\in \mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\) the element
$$\begin{aligned} \mathrm {pr}_\mathbf{{\mathfrak {k}}}^-\mathrm {Ad}(a^-(gk)n^-(gk))(Y) \in \mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}. \end{aligned}$$
(2.38)
By the orthogonal Bruhat decomposition \(\mathbf{{\mathfrak {g}}}=\mathbf{{\mathfrak {m}}}\oplus \mathbf{{\mathfrak {a}}}\oplus \mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {n}}}^-\) and the fact that \(\mathbf{{\mathfrak {a}}}\) lies in the orthogonal complement of \(\mathbf{{\mathfrak {k}}}\) in \(\mathbf{{\mathfrak {g}}}\), we have \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\subset \mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {n}}}^-\), so we can write \(Y=Y^++Y^-\) with \(Y^\pm \in \mathbf{{\mathfrak {n}}}^\pm \) and \(\theta Y^\pm = Y^\mp \). The space \(\mathbf{{\mathfrak {n}}}^\pm \) is \(\mathrm {Ad}(AN^\pm )\)-invariant. Consequently \(\mathrm {Ad}(a^-(gk)n^-(gk))(Y^-)\in \mathbf{{\mathfrak {n}}}^-\), so \(\mathrm {pr}_\mathbf{{\mathfrak {k}}}^-\mathrm {Ad}(a^-(gk)n^-(gk))(Y^-)=0\) by the opposite Iwasawa decomposition. This shows that only \(Y^+\) contributes to (2.38). Let us write \(n^-(gk)=\exp (N)\) with \(N\in \mathbf{{\mathfrak {n}}}^-\). Then we get
$$\begin{aligned} \mathrm {Ad}(n^-(gk))(Y^+)=e^{\mathrm {ad}(N)}(Y^+)=Y^+ +\underbrace{[N,Y^+]}_{\in \mathbf{{\mathfrak {g}}}_{0}=\mathbf{{\mathfrak {m}}}\oplus \mathbf{{\mathfrak {a}}}}+ \frac{1}{2} \underbrace{[N,[N,Y^+]]}_{\in \mathbf{{\mathfrak {n}}}_-}. \end{aligned}$$
Here we use that \(\mathbf{{\mathfrak {g}}}= \mathbf{{\mathfrak {g}}}_0 \oplus \mathbf{{\mathfrak {n}}}^+\oplus \mathbf{{\mathfrak {n}}}^-\) is the root-space decomposition of \(\mathbf{{\mathfrak {g}}}=\mathfrak {so}(n+1,1)\) and consequently
$$\begin{aligned} \mathbf{{\mathfrak {n}}}^+\overset{\mathrm {ad}(N)}{\longrightarrow }\mathbf{{\mathfrak {g}}}_0\overset{\mathrm {ad}(N)}{\longrightarrow }\mathbf{{\mathfrak {n}}}^-\overset{\mathrm {ad}(N)}{\longrightarrow }0. \end{aligned}$$
Furthermore, the map \(\mathrm {Ad}(a^-(gk))\) acts on \(\mathbf{{\mathfrak {n}}}^\pm \) by scalar multiplication with \(e^{\pm H^-(gk)}\) and leaves \(\mathbf{{\mathfrak {g}}}_0=\mathbf{{\mathfrak {m}}}\oplus \mathbf{{\mathfrak {a}}}\) invariant. The opposite Iwasawa projection \(\mathrm {pr}_\mathbf{{\mathfrak {k}}}^-\) maps \(\mathbf{{\mathfrak {n}}}^-\) to 0 and the space \(\mathbf{{\mathfrak {g}}}_{0}\) onto \(\mathbf{{\mathfrak {m}}}\). However, the Lie algebra element considered in (2.38) is by construction in \(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\). We therefore arrive at
$$\begin{aligned} {\mathrm {pr}}_\mathbf {{\mathfrak {k}}}^-\mathrm {Ad}(a^-(gk)n^-(gk))(Y)=\mathrm {pr}_\mathbf {{\mathfrak {k}}}^-\big ( e^{ H^-(gk)}Y^+\big ) . \end{aligned}$$
Writing
$$\begin{aligned} Y^+ =\underbrace{Y^+ + \theta Y^+}_{\in \mathbf {{\mathfrak {k}}}}- \underbrace{\theta Y^+}_{\in \mathbf {{\mathfrak {n}}}^-} ~~ \text { reveals } ~~ \mathrm {pr}_\mathbf {{\mathfrak {k}}}^-\mathrm {Ad}(a^-(gk)n^-(gk))(Y) =e^{H^-(gk)}Y. \end{aligned}$$
In summary, we have proved that
$$\begin{aligned} d\alpha _g ([k,Y])=\big [k^-(gk), e^{H^-(gk)}Y\big ]. \end{aligned}$$
(2.39)
Finally, note that \(T(K/M)\cong K\times _{\mathrm {Ad}(M)}\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}}\) induces for each \(p\in \{1,2,\ldots \}\) an isomorphism \(\Lambda ^p T^*(K/M)\cong K\times _{\Lambda ^p\mathrm {Ad}^*(M)}\Lambda ^p(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}})^*\). Under that isomorphism, a p-form \(s\in \Gamma ^\infty (\Lambda ^p T^*(K/M))\) corresponds to a section \({\hat{s}}\in \Gamma ^\infty (K\times _{\Lambda ^p\mathrm {Ad}^*(M)}\Lambda ^p(\mathbf{{\mathfrak {m}}}^{\perp _\mathbf{{\mathfrak {k}}}})^*)\), and by our above computations the pullback action \(gs\equiv (g^{-1})^*s\) of an element \(g\in G\) on s corresponds to the following action on \({\hat{s}}\):
$$\begin{aligned} \begin{aligned} \overline{(g {\hat{s}})}(k)(X_1,\ldots ,X_p)&=\overline{{\hat{s}}}(k^-(g^{-1}k))(e^{H^-(g^{-1}k)}X_1,\ldots ,e^{H^-(g^{-1}k)}X_p)\\&=e^{pH^-(g^{-1}k)}\overline{{\hat{s}}}(k^-(g^{-1}k))(X_1,\ldots ,X_p)\qquad \forall \; X_1,\ldots ,X_p\in \mathbf{{\mathfrak {n}}}^\pm ,\;k\in K.\end{aligned} \end{aligned}$$
(2.40)
Recalling the definition (2.21) of the principal series representations, and taking into account that the pullback action of G on p-currents as well as the principal series representations of G on distributional sections of \(\Lambda ^pT^*(K/M)\) are the continuous extensions of the respective actions on smooth p-forms, the proof is complete. \(\square \)
For the definition of his Poisson transform Gaillard generalizes his setting to currents with values in complex line bundles \(D^s\rightarrow K/M\) parametrized by a complex number \(s\in {{\mathbb {C}}}\). Let us recall their construction
[Gai86, Sect. 2.2]: It is based on a G-invariant functionFootnote 12
$$\begin{aligned} Q:G/K\times K/M\times G/K\rightarrow {{\mathbb {C}}}\setminus \{0\},\qquad Q(gK,kM,eK)=\Vert D(V^{-1}_{gK}\circ V_{eK})|_{kM} \Vert ,\nonumber \\ \end{aligned}$$
(2.41)
where Gaillard’s “application visuelle” \(V_{gK}: S^*_{gK}(G/K)\rightarrow K/M\), \(gK\in G/K\), is defined by
$$\begin{aligned} V_{gK}: \{{\tilde{g}}M:{\tilde{g}}K=gK\}=S^*_{gK}(G/K)\rightarrow K/M,\qquad {\tilde{g}}M \mapsto k^-({\tilde{g}}) M. \end{aligned}$$
A straightforward calculation similar to the proof of Lemma 2.8 shows that
$$\begin{aligned} Q(gK,kM,eK)=e^{H^-(g^{-1}k)}, \end{aligned}$$
(2.42)
which gives us by the G-invariance of Q for a general element \(({\tilde{g}}K,kM,gK)\in G/K\times K/M\times G/K\):
$$\begin{aligned} Q({\tilde{g}}K,kM,gK)&=Q(g(g^{-1}{\tilde{g}}K,k^-(g^{-1}k)M,eK))\nonumber \\&=Q(g^{-1}{\tilde{g}}K,k^-(g^{-1}k)M,eK)\nonumber \\&=e^{H^-({\tilde{g}}^{-1}g k^-(g^{-1}k))}. \end{aligned}$$
(2.43)
With these preparations, let us now turn to Gaillard’s definition of the line bundle \(D^s\) over K/M: Introduce an equivalence relation \(\sim _s\) on \(G/K\times K/M\times {{\mathbb {C}}}\) by
$$\begin{aligned} (gK,kM,z)\sim _s ({\tilde{g}}K,{\tilde{k}}M,{\tilde{z}}) \iff kM= & {} \tilde{k}M,\;\\ {\tilde{z}}= & {} Q({\tilde{g}}K,kM,gK)^{-s} z=e^{-sH^-({\tilde{g}}^{-1}g k^-(g^{-1}k))}z, \end{aligned}$$
and declare \(D^s:=G/K\times K/M\times {{\mathbb {C}}}/\sim _s\) with bundle projection \([gK,kM,z]\mapsto kM\). The bundle is a homogeneous G-bundle by defining the G action as
$$\begin{aligned} g'[gK,kM,z]:=[g'gK,g'(kM),z]=[g'gK,k^-(g'k)M,z]. \end{aligned}$$
The stabilizer subgroup of \(eM\in K/M\) with respect to the left-G-action on K/M is \(MAN^-\) and the action of the stabilizer group on the fiber of \(D^s\) over eM is
$$\begin{aligned}{}[manK , eM, z] = [eK, eM, e^{-sH(mank^-(n^{-1}a^{-1}m^{-1}))}z]= [eK, eM, e^{-s\log (a)}z]. \end{aligned}$$
If we define the \(MAN^-\)-representation \(\sigma _s\) by \(man\mapsto e^{-s\log (a)} \in {{\mathbb {C}}}\) then we can identify \(D^s\) with the associated line bundle \(G \times _{\sigma _s}{{\mathbb {C}}}\rightarrow G/(MAN^-)\cong K/M\). Thus the G-action on sections of this homogenous bundle is equivalent to the principal series representation \(\pi ^{s}_{\mathbb 1}\), where \(\mathbb 1\) denotes the trivial M-representation on \({{\mathbb {C}}}\). By Lemma 2.8 we know that the pullback action on p-currents is equivalent to \(\pi ^{p-n/2}_{\tau _p}\), so the action of G on \(D^s\)-valued currents is equivalent to \(\pi ^{p-n/2}_{\tau _p}\otimes \pi ^{s}_{\mathbb {1}}\) which is equivalent to \(\pi ^{p+s-n/2}_{\tau _p}\).