Skip to main content
Log in

Onsager’s Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the incompressible Euler equations in a bounded domain in three space dimensions. Recently, the first two authors proved Onsager’s conjecture for bounded domains, i.e., that the energy of a solution to these equations is conserved provided the solution is Hölder continuous with exponent greater than 1/3, uniformly up to the boundary. In this contribution we relax this assumption, requiring only interior Hölder regularity and continuity of the normal component of the energy flux near the boundary. The significance of this improvement is given by the fact that our new condition is consistent with the possible formation of a Prandtl-type boundary layer in the vanishing viscosity limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Gwiazda, P., Świerczewska-Gwiazda, A., Titi, E.S., Wiedemann, E.: On the extension of Onsager’s conjecture for general conservation laws. J. Nonlinear Sci. (2018). https://doi.org/10.1007/s00332-018-9496-4

    MATH  Google Scholar 

  2. Bardos, C., Titi, E.S.: Loss of smoothness and energy conserving rough weak solutions for the \(3d\) Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14, 42–76 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bardos, C., Titi, E.S.: Onsager’s Conjecture for the incompressible Euler equations in bounded domains. Arch. Ration. Mech. Anal. 228(1), 197–207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Székelyhidi Jr., L., Wiedemann, E.: On the absence of uniqueness for the Euler equations: the effect of the boundary (Russian). Uspekhi Mat. Nauk 69, 3–22 (2014). translation in Russian Math. Surveys 69(2), 189–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions (2017). Commun. Pure Appl. Math 73, 229–274 (2019)

    Article  MATH  Google Scholar 

  7. Chen, S., Foias, C., Holm, D., Olson, E., Titi, E.S., Wynne, S.: A connection between Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, S., Foias, C., Holm, D., Olson, E., Titi, E.S., Wynne, S.: The Camassa–Holm equations and turbulence. Physica D 133, 49–65 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-\(\alpha \) model of turbulence. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461, 629–649 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Constantin, P., E, W., Titi, E.S.: Onsager’s Conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Vicol, V.: Remarks on high Reynolds numbers hydrodynamics and the inviscid limit. J. Nonlinear Sci. 28(2), 711–724 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Drivas, T.D., Eyink, G.L.: An Onsager singularity theorem for turbulent solutions of compressible Euler equations. Commun. Math. Phys. 359, 733–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer. Phys. D 78, 222–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223, 1375–1395 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fjordholm, U.S., Wiedemann, E.: Statistical solutions and Onsager’s conjecture. Phys. D 376(377), 359–365 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gwiazda, P., Michálek, M., Świerczewska-Gwiazda, A.: A note on weak solutions of conservation laws and energy/entropy conservation (2017). Arch. Ration. Mech. Anal. 229(2018), 1223–1238 (2017)

    MATH  Google Scholar 

  20. Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray\(-\alpha \) subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 1–93 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Kato, T.: Remarks on on Zero Viscosity Limit for Nonstationary Navier–Stokes Flows with Boundary, Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., Vol. 2, pp. 85–98. Springer, New York (1983)

    Google Scholar 

  23. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, vol. 12. American Mathematical Society, New York (1996)

    Google Scholar 

  24. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace (French). Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leslie, T.M., Shvydkoy, R.: The energy balance relation for weak solutions of the density-dependent Navier–Stokes equations. J. Differ. Equ. 261, 3719–3733 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6, 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  27. Robinson, J.C., Rodrigo, J.L., Skipper, J.W.D.: Energy conservation in the 3D Euler equations on \(\mathbb{T}^2\times \mathbb{R}_{+}\). Asymptot. Anal. (to appear) (2018). arXiv:1611.00181

  28. Schwartz, L.: Théorie des Distributions (French). Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Hermann, Paris (1966)

  29. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, C.: Energy conservation for the weak solutions of the compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 225, 1073–1087 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the constructive remarks that have contributed to the improvement of this revised version of this work. C.B. and E.S.T. would like to thank the “South China Research Center for Applied Mathematics and Interdisciplinary Studies (CAMIS)", South China Normal University, for its warm hospitality where this work was completed. The work of E.S.T. was supported in part by the ONR Grant N00014-15-1-2333, and by the Einstein Stiftung/Foundation - Berlin, through the Einstein Visiting Fellow Program, and by the John Simon Guggenheim Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bardos.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardos, C., Titi, E.S. & Wiedemann, E. Onsager’s Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit. Commun. Math. Phys. 370, 291–310 (2019). https://doi.org/10.1007/s00220-019-03493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03493-6

Navigation