Skip to main content
Log in

A Physical Origin for Singular Support Conditions in Geometric Langlands Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explain how the nilpotent singular support condition introduced into the geometric Langlands conjecture by Arinkin and Gaitsgory arises naturally from the point of view of 4-dimensional \(\mathcal {N}=4\) supersymmetric gauge theory. We define what it means in topological quantum field theory to restrict a category of boundary conditions to the full subcategory of objects compatible with a fixed choice of vacuum, both in functorial field theory and in the language of factorization algebras. For B-twisted \(\mathcal {N}=4\) gauge theory with gauge group G, the moduli space of vacua is equivalent to \(\mathfrak {h}^*/W\), and the nilpotent singular support condition arises by restricting to the vacuum \(0 \in \mathfrak {h}^*/W\). We then investigate the categories obtained by restricting to points in larger strata, and conjecture that these categories are equivalent to the geometric Langlands categories with gauge symmetry broken to a Levi subgroup, and furthermore that by assembling such for the groups \(\mathrm {GL}_n\) with \({n\ge 1}\) one finds a hidden factorization algebra structure for the geometric Langlands theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The monoidal structure we’ll use depends on a choice of plane \(\mathbb {R}^2 \subseteq \mathbb {R}^n\). We’ll explain this in Section 2.2.

  2. This is called the phase space because it is the space of quantum states on a codimension 1 manifold \(Y\times [0,1]\); that it has the structure of an algebra is an additional property arising from considering the same boundary condition at both ends.

  3. The same argument works if observables map to something nilpotent; these two notions lead to scheme-theoretic support and set-theoretic support, respectively. For their comparison, look at Section 2.3.2.

  4. At least for nice enough (“QCA”) stacks, a class of stacks including \(\mathrm {Flat}_G(C)\). See [DG15, Theorem 3.3.5].

  5. For instance, Abelian Chern–Simons theory should have \((\Omega ^\bullet (U), d_{\mathrm {dR}})\) on each open set U as the space of fields, but \(\Omega ^1(U)\) is not linear dual to \(\Omega ^2(U)\).

  6. From a physical point of view we can think of the differential graded structure here as arising from the BRST formalism: the space of states is graded by ghost number and the BRST operator acts as a differential.

  7. For the purpose of this paper, the essential examples end up being versions of the B-model. The category of boundary conditions of B-model with target X is usually modelled by \({{\,\mathrm{Coh}\,}}(X)\); without loss or gain of information we can alternatively consider the category \({{\,\mathrm{IndCoh}\,}}(X)\). One may just use this as the category of boundary conditions, without relying on the framework of categorified geometric quantization.

  8. The natural functor is defined only when \(\mathcal {X}\) is eventually coconnective, that is, its structure sheaf should have cohomology in bounded degrees in the derived direction.

  9. Arinkin and Gaitsgory write this as \(\mathcal {A}^{\text {int-op}}\), where “int” stands for “internal”, they write \(\mathcal {A}^{\text {ext-op}}\) for the opposite using the other (“external”) \(\mathbb {E}_1\)-structure.

  10. There’s also a smallness condition: they should be locally finitely presented.

  11. A map of derived stacks is schematic if base changing by a derived scheme produces a derived scheme.

  12. We don’t have a class of theories which have two such descriptions in mind. While it’s possible to construct factorization algebras of quantum observables explicitly for, e.g, topologically twisted supersymmetric theories, there isn’t a known procedure for building corresponding functorial field theories assigning a number to a compact n-manifold. It would be interesting to check this expectation for the example of Chern–Simons theory.

  13. We fixed such an identification when we specified the AKSZ shifted symplectic structure above: the AKSZ shifted symplectic structure required choosing a 2-shifted symplectic structure on BG: this structure is equivalent to the choice of a G-invariant isomorphism \(\mathfrak {g}\cong \mathfrak {g}^*\).

  14. One might try to define it as an affine stack in the sense of [BZN12, Toë06], but we expect this will not be a productive way to think about it. For instance there are no non-zero maps from \(\mathbb {C}[u,u^{-1}]\) to a connective cdga, so if one tries to define \({{\,\mathrm{Spec}\,}}\mathbb {C}[u,u^{-1}]\) as a functor in the naïve way, the result is the empty stack.

  15. If G is semisimple we can define \(\widetilde{v}\) as the pullback of v under \(\mathfrak {g}^*/G \rightarrow \mathfrak {h}^*/W\), but this map doesn’t quite make sense if G is Abelian.

  16. We should remark that the question of why the relationship of boundary conditions on either side of these parabolic domain walls should be preserved by S-duality is beyond the scope of this paper.

References

  1. Arinkin, D., Gaitsgory, D.: Singular support of coherent sheaves and the geometric Langlands conjecture. Selecta Mathematica 21(1), 1–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Topological quantum field theory. Publications Mathématiques de l’IHÉS 68, 175–186 (1988)

    Article  MATH  Google Scholar 

  3. Balasubramanian, A.: Phases of \(\cal{N} = 4\) SYM, S-duality and nilpotent cones. arXiv preprint. arXiv:1609.09320 (2016)

  4. Baulieu, L.: \(SU(5)\)-invariant decomposition of ten-dimensional Yang–Mills supersymmetry. Phys. Lett. B 698(1), 63–67 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beem, C., Ben-Zvi, D., Bullimore, M., Dimofte, T., Neitzke, A.: Secondary products in supersymmetric field theory. arXiv preprint. arXiv:1809.00009 (2018)

  6. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beraldo, D.: The center of \(\mathbb{H} (Y)\). arXiv preprint. arXiv:1709.07867 (2017)

  8. Beraldo, D.: Sheaves of categories with local actions of Hochschild cochains. arXiv preprint. arXiv:1801.03752 (2018)

  9. Bezrukavnikov, R., Finkelberg, M.: Equivariant Satake category and Kostant–Whittaker reduction. Mosc. Math. J 8(1), 39–72 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benson, D., Iyengar, S., Krause, H.: Local cohomology and support for triangulated categories. In: Annales Scientifiques de l’ÉNS, Vol. 41, pp. 575–621 (2008)

  11. Blanc, A., Katzarkov, L., Pandit, P.: Generators in formal deformations of categories. arXiv preprint. arXiv:1705.00655 (2017)

  12. Blanc, A., Robalo, M., Töen, B., Vezzosi, G.: Motivic realizations of singularity categories and vanishing cycles. arXiv preprint. arXiv:1607.03012 (2016)

  13. Ben-Zvi, D., Brochier, A., Jordan, D.: Integrating quantum groups over surfaces: quantum character varieties and topological field theory. arXiv preprint. arXiv:1501.04652 (2015)

  14. Ben-Zvi, D., Gunningham, S.: Symmetries of categorical representations and the quantum Ngô action. arXiv preprint. arXiv:1712.01963 (2017)

  15. Ben-Zvi, D., Gunningham, S., Nadler, D.: The character field theory and homology of character varieties. Math. Res. Lett. (to appear) (2018)

  16. Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv preprint. arXiv:0904.1247 (2009)

  17. Ben-Zvi, D., Nadler, D.: Loop spaces and connections. J. Topol. 5(2), 377–430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ben-Zvi, D., Nadler, D.: Loop spaces and representations. Duke Math. J. 162(9), 1587–1619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ben-Zvi, D., Nadler, D.: Betti geometric Langlands. arXiv preprint. arXiv:1606.08523 (2016)

  20. Ben-Zvi, D., Neitzke, A.: Algebraic geometry of topological field theory. In preparation (2018)

  21. Calaque, D.: Lagrangian structures on mapping stacks and semi-classical TFTs. In: Stacks and Categories in Geometry, Topology, and Algebra, vol. 643, pp. 1–24. American Mathematical Soc. (2015)

  22. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, vol. I. Number 31 in New Mathematical Monographs. Cambridge University Press (2016)

  23. Calaque, D., Grivaux, J.: Formal moduli problems and formal derived stacks. arXiv preprint. arXiv:1802.09556 (2018)

  24. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, vol. II. 2018 book in progress. http://people.mpim-bonn.mpg.de/gwilliam/

  25. Costello, K., Li, S.: Twisted supergravity and its quantization. arXiv preprint. arXiv:1606.00365 (2016)

  26. Cattaneo, A., Mnev, P., Reshetikhin, N.: Perturbative quantum gauge theories on manifolds with boundary. arXiv preprint. arXiv:1507.01221 (2015)

  27. Cohen, F.: The homology of \(C_{n+1}\)-spaces, \(n \ge 0\). In: The Homology of Iterated Loop Spaces, pp. 207–351. Springer (1976)

  28. Costello, K.: Renormalization and Effective Field Theory, vol. 170. AMS (2011)

  29. Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. In: Special Issue: In Honor of Dennis Sullivan, vol. 9 of Pure and Applied Mathematics Quarterly (2013)

  30. Calaque, D., Scheimbauer, C.: A note on the \((\infty , n)\)-category of cobordisms. arXiv preprint. arXiv:1509.08906 (2015)

  31. Drinfeld, V., Gaitsgory, D.: Compact generation of the category of D-modules on the stack of \(G\)-bundles on a curve. Camb. J. Math. 3(1–2), 19–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Douglas, M.R.: D-branes, categories and \({\cal{N}}=1\) supersymmetry. J. Math. Phys. 42(7), 2818–2843 (2001). Strings, branes, and M-theory

  33. Drinfeld, V.: Two-dimensional \(\ell \)-adic representations of the fundamental group of a curve over a finite field and automorphic forms on \({\rm GL}(2)\). Am. J. Math. 105(1), 85–114 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dunn, G.: Tensor product of operads and iterated loop spaces. J. Pure Appl. Algebra 50(3), 237–258 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dyckerhoff, T.: Compact generators in categories of matrix factorizations. Duke Math. J. 159(2), 223–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Elliott, C., Yoo, P.: Geometric Langlands twists of \(N=4\) gauge theory from derived algebraic geometry. Adv. Theor. Math. Phys. 22(3), 615–708 (2018)

    Article  MathSciNet  Google Scholar 

  37. Frenkel, E., Gaitsgory, D., Vilonen, K.: On the geometric Langlands conjecture. J. Am. Math. Soc. 15(2), 367–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Freed, D.S., Quinn, F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156(3), 435–472 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Francis, J.: The tangent complex and Hochschild cohomology of \(\cal{E}_n\)-rings. Compositio Mathematica 2, 24–25 (2013)

    Google Scholar 

  40. Freed, D.S.: Extended structures in topological quantum field theory. In: Quantum Topology, pp. 162–173. World Scientific (1993)

  41. Freed, D.S.: Higher algebraic structures and quantization. Commun. Math. Phys. 159(2), 343–398 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Finkelberg, M., Schechtman, V.: Localization of \(\mathfrak{u}\)-modules. III. Tensor categories arising from configuration spaces. Preprint. arXiv:q-alg/9503013 (1995)

  43. Gaitsgory, D.: On a vanishing conjecture appearing in the geometric Langlands correspondence. Ann. Math. 160(2), 617–682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ganatra, S.: Symplectic Cohomology and Duality for the Wrapped Fukaya Category. ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Massachusetts Institute of Technology

  45. Getzler, E.: Lie theory for nilpotent \(L_\infty \)-algebras. Ann. Math. 170(1), 271–301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gorbounov, V., Gwilliam, O., Williams, B.: Chiral differential operators via Batalin-Vilkovisky quantization. arXiv preprint. arXiv:1610.09657 (2016)

  47. Ginzburg, V.: Perverse sheaves on a loop group and Langlands’ duality. arXiv preprint. arXiv:alg-geom/9511007 (1995)

  48. Gaiotto, D., Moore, G.W., Witten, E.: Algebra of the infrared: string field theoretic structures in massive \(\cal{N} =(2,2)\) field theory in two dimensions. arXiv preprint. arXiv:1506.04087 (2015)

  49. Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry, vol. I. Correspondences and Duality, volume 221 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2017)

  50. Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry, vol. II. Deformations, Lie Theory and Formal Geometry, volume 221 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2017)

  51. Gwilliam, O.: Factorization Algebras and Free Field Theory. Ph.D. thesis, Northwestern University (2012)

  52. Hennion, B.: Tangent Lie algebra of derived Artin stacks. J. Reine Angew. Math. 741, 1–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kapranov, M.: Rozansky–Witten invariants via Atiyah classes. Compos. Math. 115(1), 71–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kapustin, A.: A note on quantum geometric Langlands duality, gauge theory, and quantization of the moduli space of flat connections. arXiv preprint. arXiv:0811.3264 (2008)

  55. Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceedings of the International Congress of Mathematicians 2010, pp. 2021–2043. World Scientific (2010)

  56. Kapustin, A., Li, Y.: D-branes in Landau–Ginzburg models and algebraic geometry. J. High Energy Phys. (12):005, 44 (2003)

  57. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Koppensteiner, C.: Hochschild cohomology of torus-equivariant D-modules. arXiv preprint. arXiv:1506.07370 (2015)

  60. Kapustin, A., Rozansky, L.: Three-dimensional topological field theory and symplectic algebraic geometry II. Commun. Number Theory Phys. 4(3), 463–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kapustin, A., Rozansky, L., Saulina, N.: Three-dimensional topological field theory and symplectic algebraic geometry I. Nuclear Phys. B 816(3), 295–355 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Kapustin, A., Saulina, N.: Chern–Simons–Rozansky–Witten topological field theory. Nuclear Phys. B 823(3), 403–427 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5, 231–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lafforgue, V.: Quelques calculs reliés à la correspondance de Langlands géométrique pour \(\mathbb{P}^1\) (version provisoire). Available at author’s website. http://www.math.jussieu.fr/~ vlafforg. (2009)

  66. Laumon, G.: Correspondance de Langlands Géométrique pour les corps de fonctions. Duke Math. J. 54, 309–359 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  67. Laumon, G.: Transformation de Fourier généralisée. arXiv preprint. arXiv:alg-geom/9603004 (1996)

  68. Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. 129–280, 2009 (2008)

    Google Scholar 

  69. Lurie, J.: DAG VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems. Available from author’s website. http://www.math.harvard.edu/~lurie/papers/DAG-VIII.pdf (2011)

  70. Lurie, J.: Higher Algebra. Available from author’s website. http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf (2014)

  71. Lusztig, G.: Singularities, character formulas, and a q-analog of weight multiplicities. Astérisque 101(102), 208–229 (1983)

    MathSciNet  MATH  Google Scholar 

  72. Lambrechts, P., Volić, I.: Formality of the Little \(N\)-Disks Operad, vol. 230 of Memoirs of the Americal Mathematical Society. American Mathematical Society (2014)

  73. Mirković, I.: Loop Grassmannians in the framework of local spaces over a curve. In: Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, vol. 623 of Contemporary Mathematics, pp. 215–226 (2014)

  74. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166(1), 95–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. Moore, G., Witten, E.: Integration over the \(u\)-plane in Donaldson theory. Adv. Theor. Math. Phys. 1, 298–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  76. Nadler, D., Yun, Z.: Spectral action in Betti geometric Langlands. arXiv preprint. arXiv:1611.04078 (2016)

  77. Orlov, D.: Triangulated categories of singularities and D-branes in Landau–Ginzburg models. Proc. Steklov Inst. Math 246(3), 227–248 (2004)

    MathSciNet  MATH  Google Scholar 

  78. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publications Mathématiques de l’IHÉS 117(1), 271–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. Raskin, S.: Chiral categories. Available from author’s website. http://math.mit.edu/~sraskin/chiralcats.pdf (2015)

  80. Rothstein, M.: Sheaves with connection on Abelian varieties. Duke Math. J. 84(3), 565–598 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  81. Safronov, P.: Braces and Poisson additivity. arXiv preprint. arXiv:1611.09668 (2016)

  82. Segal, G.: The definition of conformal field theory. In: Differential Geometrical Methods in Theoretical Physics, pp. 165–171. Springer (1988)

  83. Sharpe, E.: D-branes, derived categories, and Grothendieck groups. Nuclear Phys. B 561(3), 433–450 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 80(1), 5–79 (1994)

  85. Soibelman, Y.: Remarks on cohomological Hall algebras and their representations. In: Arbeitstagung Bonn 2013, pp. 355–385. Springer (2016)

  86. Schommer-Pries, C.: The Classification of Two-Dimensional Extended Topological Field Theories. Ph.D. thesis, University of California Berkeley. Available as an arXiv preprint. arXiv:1112.1000 (2009)

  87. Tamarkin, D.E.: Another proof of M. Kontsevich formality theorem for \(\mathbb{R}^n\). arXiv preprint. arXiv:math.QA/9803025, 24 (1998)

  88. Toën, B.: Higher and derived stacks: a global overview. In: Proc. Sympos. Pure Math, vol. 80, pp. 435–487 (2005)

  89. Toën, B.: Champs affines. Selecta Mathematica 12(1), 39–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  90. Toën, B.: Operations on derived moduli spaces of branes. arXiv preprint. arXiv:1307.0405 (2013)

  91. Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Toën, B.: Derived algebraic geometry and deformation quantization. arXiv preprint. arXiv:1403.6995 (2014)

  93. Toën, B., Vaquié, M.: Moduli of objects in dg-categories. In: Annales Scientifiques de l’École Normale Supérieure, vol. 40, pp. 387–444. Elsevier (2007)

  94. Wallbridge, J.: Derived smooth stacks and prequantum categories. arXiv preprint. arXiv:1610.00441 (2016)

  95. Weil, A.: Œuvres scientifiques. Collected papers. vol. i (1926–1951) (1979)

  96. Witten, E.: Geometric Langlands duality and the equations of Nahm and Bogomolny. Proc. R. Soc. Edinburgh Sect. A Math. 140(4), 857–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project began with a suggestion of David Nadler and David Ben-Zvi, and would not have been possible without David Ben-Zvi generously sharing his ideas about the nature of vacua in the context of functorial quantum field theories. We would like to thank Kevin Costello for many helpful conversations about all aspects of this work. We would also like to thank Dima Arinkin, Davide Gaiotto, Dennis Gaitsgory, Saul Glasman, Owen Gwilliam, Pavel Safronov, Claudia Scheimbauer, and Brian Williams for useful conversations and comments, and the anonymous referees for detailed comments and criticism. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation. CE acknowledges the support of IHÉS. The research of CE on this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (QUASIFT Grant Agreement 677368). PY acknowledges the support of IHÉS during his visit in 2017 and funding from ERC QUASIFT Grant 677368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philsang Yoo.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Singular Support for Global Complete Intersections

In this “Appendix” we’ll describe the proof of Proposition 2.49 from Section 2.2.2. The argument we’ll give is only a slight modification of the arguments in [AG15, Section 9.2]. We give a proof here, following Arinkin and Gaitsgory closely, in order to justify the modification where the auxiliary degree 2 parameter is included.

Recall the setup: \(\mathcal {Z}\) was a global complete intersection stack, which meant that it could be written as a fiber product smooth stacks

where \(\mathcal {X} \rightarrow \mathcal {V}\) is a section of a smooth schematic map \(\mathcal {V}\rightarrow \mathcal {X}\). One can associate to such a global complete intersection a pair of groupoids which we’ll use heavily: namely \(\mathcal {G}_{\mathcal {Z}/\mathcal {U}} := \mathcal {Z} \times _{\mathcal {U}} \mathcal {Z}\) as a derived group scheme over \(\mathcal {Z}\) and \(\mathcal {G}_{\mathcal {X}/\mathcal {V}} := \mathcal {X} \times _{\mathcal {V}} \mathcal {X}\), a derived group scheme over \(\mathcal {X}\).

There is a canonical morphism \(f :\mathrm {Sing}(\mathcal {Z}) \rightarrow \mathrm {Sing}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U}) \cong V \times _{\mathcal {X}} \mathcal {U}\), obtained by first embedding \(\mathrm {Sing}(\mathcal {Z})\) into the total space \(V \times _{\mathcal {X}} \mathcal {Z}\) of the relative tangent complex \(\mathbb {T}_{\mathcal {Z} /\mathcal {X}}\), where V is the total space of the restriction of \(\mathbb {T}_{\mathcal {Z} /\mathcal {X}}\) to \(\mathcal {X}\), and then composing with the defining map \(\mathcal {Z} \rightarrow \mathcal {U}\). This definition of V is equivalent to the definition of V given in Section 2.2.2 by [AG15, 9.1.4].

Proposition A.1

If \(Y \subseteq \mathrm {Sing}(\mathcal {Z})\) is a closed subset of the form \(f^{-1}(\widetilde{Y} \times _{\mathcal {X}}\mathcal {U})\), then there is a canonical equivalence

$$\begin{aligned}&\mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {Z})[t,t^{-1}] \cong \mathrm {IndCoh}(\mathcal {Z})[t,t^{-1}] \\&\quad \otimes _{\mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})[t,t^{-1}]^{\mathrm {op}}\text {-mod}} \mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})[t,t^{-1}]^{\mathrm {op}}\text {-mod}_{\widetilde{Y}[t,t^{-1}]} , \end{aligned}$$

where the category \(\mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})^{\mathrm {op}}\text {-mod}\) acts on \(\mathrm {IndCoh}(Z)\) by first using Koszul duality to identify it with the category \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})\), then using the monoidal functor

$$\begin{aligned}\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})} {{\,\mathrm{QC}\,}}(\mathcal {U}) \rightarrow \mathrm {IndCoh}(\mathcal {G}_{\mathcal {Z}/\mathcal {U}})\end{aligned}$$

to define an action of \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})\) on \(\mathrm {IndCoh}(\mathcal {Z})\).

Proof

We’ll start by recalling the main ideas exploited by Arinkin and Gaitsgory, then introduce the parameter t. According to [AG15, Section 9.2], in this context we can understand singular support conditions for \(\mathrm {IndCoh}(\mathcal {Z})\) in terms of an action of the monoidal category \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})\). Indeed, the groupoid \(\mathcal {G}_{\mathcal {Z}/\mathcal {U}}\) acts on \(\mathcal {Z}\), and so the category \(\mathrm {IndCoh}(\mathcal {Z})\) is a module over the monoidal category \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {Z}/\mathcal {U}})\). There’s a natural monoidal pullback functor

$$\begin{aligned}\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})} {{\,\mathrm{QC}\,}}(\mathcal {U}) \rightarrow \mathrm {IndCoh}(\mathcal {G}_{\mathcal {Z}/\mathcal {U}})\end{aligned}$$

which makes \(\mathrm {IndCoh}(\mathcal {Z})\) into a module over \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{\mathrm {IndCoh}(\mathcal {X})} \mathrm {IndCoh}(\mathcal {U})\), or indeed over \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})\). In order to understand singular support in terms of this action, we first identify the category on the left hand side as

$$\begin{aligned} \mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})} {{\,\mathrm{QC}\,}}(\mathcal {U}) \cong&\, \mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \\&\otimes _{{{\,\mathrm{QC}\,}}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})} \left( {{\,\mathrm{QC}\,}}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})} {{\,\mathrm{QC}\,}}(\mathcal {U}) \right) \\ \cong&\, \mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})} {{\,\mathrm{QC}\,}}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})\\ \cong&\, \mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U}). \end{aligned}$$

By [AG15, Lemma 9.2.6] the category \(\mathrm {IndCoh}_Y(\mathcal {Z})\) is equivalent to the restricted category

$$\begin{aligned}\mathrm {IndCoh}(\mathcal {Z}) \otimes _{\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})} \mathrm {IndCoh}_{f(Y)}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U}).\end{aligned}$$

We’ll want a slightly modified version of this statement.

Let us bring the auxiliary parameter t into the story. We claim that there is an equivalence

$$\begin{aligned}&\mathrm {IndCoh}_{f^{-1}(Y)[t,t^{-1}]}(\mathcal {Z})[t,t^{-1}] \cong \mathrm {IndCoh}(\mathcal {Z})[t,t^{-1}] \otimes _{\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})[t,t^{-1}]}\\&\quad \times \mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})[t,t^{-1}] \end{aligned}$$

where now \(Y \subseteq \mathrm {Sing}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})\) is a Zariski-closed subset.

This is proven in exactly the same way as [AG15, Lemma 9.2.6]. As they argue, it suffices to prove the claim in the case where \(\mathcal {Z}\) is affine. This argument is not affected by the introduction of the parameter t since the descent takes place independently of this parameter (heuristically we’re performing descent for maps \(Z \times {{\,\mathrm{Spec}\,}}\mathbb {C}[t,t^{-1}] \rightarrow \mathcal {Z} \times {{\,\mathrm{Spec}\,}}\mathbb {C}[t,t^{-1}]\) which are constant in the second factor). The embedding \(f :\mathrm {Sing}(\mathcal {Z}) \rightarrow V \times _{\mathcal {X}} \mathcal {U}\) induces a map \(f^*:{{\,\mathrm{Sym}\,}}(V)[t,t^{-1}] \otimes _{\mathcal {O}(\mathcal {X})} \mathcal {O}(\mathcal {U}) \rightarrow \mathcal {O}(\mathrm {Sing}(\mathcal {Z}))[t,t^{-1}]\). We then note that the triangle

figure b

defined using this map and the action of \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times \mathcal {U})[t,t^{-1}]\) on \(\mathrm {IndCoh}(\mathcal {Z})[t,t^{-1}]\) commutes. This implies the claim that we want since we can equivalently take the restriction to \(f^{-1}(Y)[t,t^{-1}]\) with respect to the \(\mathcal {O}(\mathrm {Sing}(\mathcal {Z}))[t,t^{-1}]\)-action, or the restriction to its preimage under \(f^*\), i.e. the restriction to \(f(f^{-1}(Y))[t,t^{-1}] = Y[t,t^{-1}]\) with respect to the \({{\,\mathrm{Sym}\,}}(V)[t,t^{-1}] \otimes \mathcal {O}(\mathcal {U})\)-action.

In particular, suppose \(Y \subseteq V \times _{\mathcal {X}} \mathcal {Z}\) is a subset of the form \(\widetilde{Y} \times _{\mathcal {X}} \mathcal {Z}\) for some closed subset \(\widetilde{Y} \subseteq V\). Then according to [AG15, Proposition 8.4.14] there is an equivalence

$$\begin{aligned}\mathrm {IndCoh}_Y(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U}) \cong \mathrm {IndCoh}_{\widetilde{Y}}(\mathcal {G}_{\mathcal {X}/\mathcal {V}}) \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})} {{\,\mathrm{QC}\,}}(\mathcal {U}).\end{aligned}$$

We can make the same argument identically including the parameter t in order to say that there is an equivalence

$$\begin{aligned}&\mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {G}_{\mathcal {X}/\mathcal {V}} \times _{\mathcal {X}} \mathcal {U})[t,t^{-1}] \cong \mathrm {IndCoh}_{\widetilde{Y}[t,t^{-1}]}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})[t,t^{-1}] \\&\quad \otimes _{{{\,\mathrm{QC}\,}}(\mathcal {X})[t,t^{-1}]} {{\,\mathrm{QC}\,}}(\mathcal {U})[t,t^{-1}]. \end{aligned}$$

The upshot of all this is that if \(Y \subseteq \mathrm {Sing}(\mathcal {Z})\) is a closed subset of the form \(f^{-1}(\widetilde{Y} \times _{\mathcal {X}}\mathcal {U})\) then we can understand the restricted category \(\mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {Z})[t,t^{-1}]\) as the restriction along \(\widetilde{Y}[t,t^{-1}]\) of \(\mathrm {IndCoh}(\mathcal {Z})[t,t^{-1}]\) with respect to the action of \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})[t,t^{-1}]\). Even better, by Koszul duality [AG15, 9.1.2] (this is just the observation that the counit of the adjunction 2.25 is an equivalence), we can identify \(\mathrm {IndCoh}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})\) with the category \(\mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})^{\mathrm {op}}\text {-mod}\) and thus [AG15, Corollary 9.1.7] we are able to identify \(\mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {Z})[t,t^{-1}]\) as the restriction along \(\widetilde{Y}[t,t^{-1}]\) of \(\mathrm {IndCoh}(\mathcal {Z})[t,t^{-1}]\) with respect to the action of \(\mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})[t,t^{-1}]^{\mathrm {op}}\text {-mod}\). Specifically here we’re using Koszul duality before taking the tensor product with \(\mathbb {C}[t,t^{-1}]\text {-mod}\); it’s still true that this induces an equivalence of categories

$$\begin{aligned}\mathrm {HC}^\bullet (\mathcal {X} / \mathcal {V})[t,t^{-1}]^{\mathrm {op}}\text {-mod}_{Y[t,t^{-1}]} \cong \mathrm {IndCoh}_{Y[t,t^{-1}]}(\mathcal {G}_{\mathcal {X}/\mathcal {V}})[t,t^{-1}]\end{aligned}$$

with specified support conditions. It suffices to check this smoothly locally, so we can assume \(\mathcal {X}\) is affine in which case it follows from commutativity of the triangle (*). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, C., Yoo, P. A Physical Origin for Singular Support Conditions in Geometric Langlands Theory. Commun. Math. Phys. 368, 985–1050 (2019). https://doi.org/10.1007/s00220-019-03438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03438-z

Navigation