Skip to main content
Log in

Extended Quantum Field Theory, Index Theory, and the Parity Anomaly

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah–Patodi–Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3 + 1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Gaumé L., Pietra S. Della, Moore GW.: Anomalies and odd dimensions. Ann. Phys. 163, 288–317 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ammann B., Lauter R., Nistor V.: On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. Sci. 2004(1–4), 161–193 (2004) arXiv:math.DG/0201202

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah MF., Patodi VK., Singer IM.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Philos. Soc. 77(1), 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atiyah MF.: Topological quantum field theory. Publ. Math. IHÉS 68, 175–186 (1988)

    Article  MATH  Google Scholar 

  5. Bakalov B, Kirillov Jr. AA: Lectures on Tensor Categories and Modular Functors. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  6. Bunke U.: On the gluing problem for the \({\eta}\)-invariant. J. Differ. Geom. 41(2), 397–448 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunke, U: Index theory, eta forms, and Deligne cohomology. Memoirs of the American Mathematical Society, vol. 198, number 928. American Mathematical Society, Providence, RI (2009)

  8. Chen X., Gu Z-C., Liu Z-X., Wen X-G.: Symmetry-protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87(15), 155114 (2013) arXiv:1106.4772 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  9. Chen X., Gu Z-C., Wen X-G.: Local unitary transformation, long-range quantum entanglement, wavefunction renormalization, and topological order. Phys. Rev. B 82, 155138 (2010) arXiv:1004.3835 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  10. Callan CG. Jr, Harvey JA.: Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B 250, 427–436 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chang LN., Liang Y.: Topological anomalies: explicit examples. Commun. Math. Phys. 108, 139–152 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Calaque, D., Scheimbauer, C.I.: A note on the \({(\infty,n)}\)-category of cobordisms (2015). arXiv:1509.08906 [math.AT] (preprint)

  13. Dai X., Freed DS.: \({\eta}\)-invariants and determinant lines. CR Acad. Sci. Paris Sér. I Math. 320(5), 585–591 (1995) arXiv:hep-th/9405012

    MathSciNet  MATH  Google Scholar 

  14. Ertem, Ü.: Index of Dirac operators and classification of topological insulators (2017). arXiv:1709.01778 [math-ph] (preprint)

  15. Faddeev LD.: Operator anomaly for the Gauss law. Phys. Lett. B 145, 81–84 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. Freed, D. S., Hopkins, M. J.: Reflection positivity and invertible topological phases (2016). arXiv:1604.06527 [hep-th] (preprint)

  17. Freed DS., Quinn F.: Chern–Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993) arXiv:hep-th/9111004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Freed DS.: Anomalies and invertible field theories. Proc. Symp. Pure Math. 88, 25–46 (2014) arXiv:1404.7224 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  19. Faddeev LD., Shatashvili SL.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Theor. Math. Phys. 60, 770–778 (1985)

    Article  Google Scholar 

  20. Faddeev LD., Shatashvili SL.: Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies. Phys. Lett. B 167, 225–228 (1986)

    Article  ADS  Google Scholar 

  21. Freed DS., Teleman C.: Relative quantum field theory. Commun. Math. Phys. 326(2), 459–476 (2014) arXiv:1212.1692 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fiorenza D., Valentino A.: Boundary conditions for topological quantum field theories, anomalies and projective modular functors. Commun. Math. Phys. 338(3), 1043–1074 (2015) arXiv:1409.5723 [math.QA]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Gaiotto D., Kapustin A.: Spin TQFTs and fermionic phases of matter. Int. J. Mod. Phys. A 31(28n29), 1645044 (2016) arXiv:1505.05856 [cond-mat.str-el]

    Article  ADS  MATH  Google Scholar 

  24. Hasan MZ., Kane CL.: Topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010) arXiv:1002.3895 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  25. Hesse J., Schweigert C., Valentino A.: Frobenius algebras and homotopy fixed points of group actions on bicategories. Theory Appl. Categ. 32(18), 652–681 (2017) arXiv:1607.05148 [math.QA]

    MathSciNet  MATH  Google Scholar 

  26. Johnson-Freyd T., Scheimbauer C.: (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories. Adv. Math. 307, 147–223 (2017) arXiv:1502.06526 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  27. Kock J.: Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  28. Kapustin, A., Turzillo, A.: Equivariant topological quantum field theory and symmetry-protected topological phases. J. High Energy Phys. 03:006. arXiv:1504.01830 [cond-mat.str-el] (2017)

  29. Kapranov M., Voevodsky V.: Braided monoidal 2-categories and Manin-Schechtman higher braid groups. J. Pure Appl. Algebr. 92, 241–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Leinster, T.: Basic bicategories (1998). arXiv:math.CT/9810017 (preprint)

  31. Loya, P., Melrose, R.B.: Fredholm perturbations of Dirac operators on manifolds with corners. (2002) (preprint)

  32. Loya, P.: On the b-pseudodifferential calculus on manifolds with corners. Ph.D. Thesis (1998)

  33. Loya P.: Index theory of Dirac operators on manifolds with corners up to codimension two. Oper. Theory Adv. Appl. 151, 131–166 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Loya P.: Dirac operators, boundary value problems, and the b-calculus. Contemp. Math. 366, 241–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lurie J.: On the classification of topological field theories. Curr. Dev. Math. 2008, 129–280 (2009) arXiv:0905.0465 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  36. Lesch M., Wojciechowski KP.: On the \({\eta}\)-invariant of generalized Atiyah–Patodi–Singer boundary value problems. Ill. J. Math. 40(1), 30–46 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Melrose RB.: The Atiyah–Patodi–Singer Index Theorem. A.K. Peters, Wellesley (1993)

    Book  MATH  Google Scholar 

  38. Mickelsson J.: Chiral anomalies in even and odd dimensions. Commun. Math. Phys. 97, 361–370 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Monnier S.: Hamiltonian anomalies from extended field theories. Commun. Math. Phys. 338(3), 1327–1361 (2015) arXiv:1410.7442 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Monnier, S.: The anomaly field theories of six-dimensional (2,0) superconformal theories (2017). arXiv:1706.01903 [hep-th] (preprint)

  41. Mazzeo R., Piazza P.: Dirac operators, heat kernels and microlocal analysis. II. Analytic surgery. Rend. Mat. Appl. (7) 18(2), 221–288 (1998) arXiv:math.DG/9807040

    MathSciNet  MATH  Google Scholar 

  42. Müller W.: \({\eta}\)-invariants and manifolds with boundary. J. Differ. Geom. 40(2), 311–377 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nash C.: Differential Topology and Quantum Field Fheory. Academic Press, London (1991)

    Google Scholar 

  44. Niemi AJ., Semenoff GW.: Axial anomaly induced fermion fractionization and effective gauge theory actions in odd-dimensional spacetimes. Phys. Rev. Lett. 51, 2077–2080 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  45. Qi X-L., Zhang S-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057–1110 (2011)

    Article  ADS  Google Scholar 

  46. Redlich AN.: Parity violation and gauge non-invariance of the effective gauge field action in three dimensions. Phys. Rev. D 29, 2366–2374 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ryu S., Moore JE., Ludwig AWW.: Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors. Phys. Rev. B 85, 045104 (2012) arXiv:1010.0936 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  48. Ryu S., Zhang S-C.: Interacting topological phases and modular invariance. Phys. Rev. B 85, 245132 (2012) arXiv:1202.4484 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  49. Sati H.: Corners in M-theory. J. Phys. A 44, 255402 (2011) arXiv:1101.2793 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Segal, G.B.: The definition of conformal field theory. In: Bleuler, K., Werner, M. (eds.) Differential Geometrical Methods in Theoretical Physics, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 250, pp. 165–171. Springer, Dordrecht (1988)

  51. Segal, G.B.: Three roles of quantum field theory. Felix Klein Lectures. http://www.mpim-bonn.mpg.de/node/3372/abstracts (2011). Accessed 12 Sept 2017

  52. Schommer-Pries, C.J.: The classification of two-dimensional extended topological field theories. Ph.D. Thesis. arXiv:1112.1000 [math.AT] (2011)

  53. Stolz S., Teichner P.: Supersymmetric field theories and generalized cohomology. Proc. Symp. Pure Math. 83, 279–340 (2011) arXiv:1108.0189 [math.AT]

    Article  MathSciNet  MATH  Google Scholar 

  54. Seiberg N., Witten E.: Gapped boundary phases of topological insulators via weak coupling. Prog. Theor. Exp. Phys. 2016(12), 12C101 (2016) arXiv:1602.04251 [cond-mat.str-el]

    Article  MathSciNet  MATH  Google Scholar 

  55. Turaev VG.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter, New York (2010)

    Book  MATH  Google Scholar 

  56. Wen X-G.: Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders. Phys. Rev. D 88(4), 045013 (2013) arXiv:1303.1803 [hep-th]

    Article  ADS  Google Scholar 

  57. Wang JC., Gu Z-C., Wen X-G.: Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond. Phys. Rev. Lett. 114(3), 031601 (2015) arXiv:1405.7689 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  58. Willerton S.: The twisted Drinfeld double of a finite group via gerbes and finite groupoids. Algebr. Geom. Topol. 8(3), 1419–1457 (2008) arXiv:math.QA/0503266

    Article  MathSciNet  MATH  Google Scholar 

  59. Witten E.: Fermion path integrals and topological phases. Rev. Mod. Phys. 88(3), 035001 (2016) arXiv:1508.04715 [cond-mat.mes-hall]

    Article  ADS  Google Scholar 

  60. Witten E.: The “parity” anomaly on an unorientable manifold. Phys. Rev. B 94(19), 195150 (2016) arXiv:1605.02391 [hep-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Müller.

Additional information

Communicated by X. Yin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, L., Szabo, R.J. Extended Quantum Field Theory, Index Theory, and the Parity Anomaly. Commun. Math. Phys. 362, 1049–1109 (2018). https://doi.org/10.1007/s00220-018-3169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3169-x

Navigation