Skip to main content
Log in

Analytic Hadamard States, Calderón Projectors and Wick Rotation Near Analytic Cauchy Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Klein–Gordon equation on analytic spacetimes with an analytic Cauchy surface. In this setting, we prove the existence of pure analytic Hadamard states. The proof is based on considering an elliptic operator obtained by Wick rotating the Klein–Gordon operator in a neighborhood of a Cauchy hypersurface. The Cauchy data of Hadamard two-point functions are constructed as Calderón projectors (suitably generalized if the hypersurface is non-compact) for the elliptic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azagra D., Ferrera J., López-Mesas F., Rangel Y.: Smooth approximation of Lipschitz functions on Riemannian manifolds. J. Math. Anal. Appl. 326, 1370–1378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, European Mathematical Society Publishing House, ISBN 978-3-03719-037-1, 2007 (2007)

  3. Bony, J.M.: Équivalence des diverses notions de spectre singulier analytique. Séminaire Équations aux dérivées partielles (Polytechnique), Talk no. 3, pp. 1–12 (1977)

  4. Brum M., Fredenhagen K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quantum Gravity 31(2), 025024 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved space–times. Commun. Math. Phys. 180, 633–652 (1996)

    Article  ADS  MATH  Google Scholar 

  6. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Brum M., Jorás S.E.: Hadamard state in Schwarzschild–de Sitter spacetime. Class. Quantum Gravity 32(1), 015013 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brum M., Them K.: States of low energy on homogeneous and inhomogeneous, expanding spacetimes. Class. Quantum Gravity 30, 235035 (2013)

    Article  ADS  MATH  Google Scholar 

  9. Dereziński J., Gérard C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  10. Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved space–time, II. Ann. Phys. 136, 243–272 (1981)

    Article  ADS  MATH  Google Scholar 

  13. Gérard, C.: On the Hartle–Hawking–Israel states for spacetimes with static bifurcate Killing horizons (preprint). arXiv:1608.06739 (2016)

  14. Gell-Redman J., Haber N., Vasy A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342(1), 333–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713–755 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gérard C., Wrochna M.: Hadamard states for the linearized Yang–Mills equation on curved spacetime. Commun. Math. Phys. 337, 253–320 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gérard, C., Wrochna, M.: Hadamard property of the in and out states for Klein–Gordon fields on asymptotically static spacetimes, acc. Ann. Henri Poincaré. 18(8), 2715–2756 (2017)

  18. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes I, acc. in Am. J. Math. arXiv:1609.00192 (2016)

  19. Gérard C., Oulghazi O., Wrochna M.: Hadamard states for the Klein–Gordon equation on Lorentzian manifolds of bounded geometry. Commun. Math. Phys. 352(2), 352–519 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grubb G.: Distributions and Operators, Graduate Texts in Mathematics. Springer, Berlin (2009)

    Google Scholar 

  21. Hollands S.: Hadamard condition for Dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. In: Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M. (eds.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press (2015)

  23. Hörmander L.: Linear Partial Differential Operators. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  24. Hörmander L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1990)

    MATH  Google Scholar 

  25. Hörmander L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1994)

    Google Scholar 

  26. Hörmander L.: Uniqueness theorems and wavefront sets for solutions of linear differential equations with analytic coefficients. Commun. Pure Appl. Math. 24, 671–704 (1971)

    Article  MATH  Google Scholar 

  27. Junker W.: Hadamard States, adiabatic vacua and the construction of physical states for scalar quantum fields on curved spacetime. Rev. Math. Phys. 8, 1091–1159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Junker W., Schrohe E.: Adiabatic vacuum states on general space–time manifolds: definition, construction, and physical properties. Ann. Henri Poincaré. 3, 1113–1181 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kaneko A.: Introduction to Hyperfunctions, Mathematics and Its Applications. Kluwer, Dordrecht (1988)

    Google Scholar 

  30. Kankaanrinta M.: Some basic results concerning G−invariant Riemannian metrics. J. Lie Theory 18, 243–251 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Kato, T.: Perturbation Theory for Linear Operators, Springer Classics in Mathematics. Springer-Verlag, Berlin (1995)

  32. Kawai T.: Construction of local elementary solutions for linear partial differential operators with real analytic coefficients. Publ. R.I.M.S. Kyoto Univ. 7, 363–397 (1971)

    Article  MATH  Google Scholar 

  33. Kay B.S., Wald R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. In: Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M. (eds.) Advances in Algebraic Quantum Field Theory. Springer (2015)

  35. Komatsu, H.: Microlocal analysis in Gevrey classes and in complex domains in Microlocal Analysis and Applications C.I.M.E. Lectures Montecatini Terme L. Cattabriga L. Rodino eds. Springer (1989)

  36. Moretti V.: Quantum out-states holographically induced by asymptotic flatness: invariance under space–time symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31–75 (2008)

    Article  ADS  MATH  Google Scholar 

  37. Olbermann H.: States of low energy on Robertson–Walker spacetimes. Class. Quantum Gravity 24, 5011 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Radzikowski M.: Micro-local approach to the Hadamard condition in quantum field theory on curved spacetime. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Radzikowski M.: A local to global singularity theorem for quantum field theory on curved spacetime. Commun. Math. Phys. 1801, 1–22 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Sanders K.: On the construction of Hartle–Hawking–Israel state across a static bifurcate Killing horizon. Lett. Math. Phys. 105(4), 575–640 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Sahlmann H., Verch R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705–731 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sato, M., Kawai, T. Kashiwara, K.: Hyperfunctions and Pseudodifferential Equations in Springer Lectures Notes in Mathematics, vol. 287. Springer-Verlag, Berlin (1971)

  44. Schapira, P.: Wick rotation for D-modules. Math. Phys. Anal. Geom. 20, 21 (2017)

  45. Shubin M.A.: Pseudo-Differential Operators and Spectral Theory. Springer, Berlin (2001)

    Book  Google Scholar 

  46. Strohmaier A.: The Reeh–Schlieder Property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space–times: analytic wavefront sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes Ann. Henri Poincaré. 19(5), 1529–1586 (2018)

  49. Verch R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pierre Schapira for all the useful discussions. Support from the Grants ANR-12-BS01-012-01 and ANR-16-CE40-0012-01 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Wrochna.

Additional information

Communicated by Y. Kawahigashi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, C., Wrochna, M. Analytic Hadamard States, Calderón Projectors and Wick Rotation Near Analytic Cauchy Surfaces. Commun. Math. Phys. 366, 29–65 (2019). https://doi.org/10.1007/s00220-019-03349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03349-z

Navigation