Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Communications in Mathematical Physics
  3. Article
Smooth Dense Subalgebras and Fourier Multipliers on Compact Quantum Groups
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Gradient forms and strong solidity of free quantum groups

19 November 2020

Martijn Caspers

Quantum Spectral Problems and Isomonodromic Deformations

01 June 2022

Mikhail Bershtein, Pavlo Gavrylenko & Alba Grassi

Higher Haantjes Brackets and Integrability

02 November 2021

Piergiulio Tempesta & Giorgio Tondo

Universal Quantum (Semi)groups and Hopf Envelopes

22 February 2022

Marco Andrés Farinati

Schatten class and nuclear pseudo-differential operators on homogeneous spaces of compact groups

06 January 2022

Vishvesh Kumar & Shyam Swarup Mondal

Superintegrability of Kontsevich matrix model

31 March 2021

Andrei Mironov & Alexei Morozov

Weyl–Schrödinger Representations of Heisenberg Groups in Infinite Dimensions

24 April 2020

Oleh Lopushansky

Markov Semi-groups Associated with the Complex Unimodular Group $$Sl(2,{\mathbb {C}})$$ S l ( 2 , C )

21 February 2019

Nizar Demni

Quantum Calculus and Ideals in the Algebra of Compact Operators

01 September 2019

A. G. Sergeev

Download PDF
  • Open Access
  • Published: 13 August 2018

Smooth Dense Subalgebras and Fourier Multipliers on Compact Quantum Groups

  • Rauan Akylzhanov1,
  • Shahn Majid1 &
  • Michael Ruzhansky  ORCID: orcid.org/0000-0001-8737-92681 

Communications in Mathematical Physics volume 362, pages 761–799 (2018)Cite this article

  • 458 Accesses

  • 9 Citations

  • 2 Altmetric

  • Metrics details

Abstract

We define and study dense Frechet subalgebras of compact quantum groups realised as smooth domains associated with a Dirac type operator with compact resolvent. Further, we construct spectral triples on compact matrix quantum groups in terms of Clebsch–Gordon coefficients and the eigenvalues of the Dirac operator \({\mathcal{D}}\). Grotendieck’s theory of topological tensor products immediately yields a Schwartz kernel theorem for linear operators on compact quantum groups and allows us to introduce a natural class of pseudo-differential operators on them. It is also shown that regular pseudo-differential operators are closed under compositions. As a by-product, we develop elements of the distribution theory and corresponding Fourier analysis. We give applications of our construction to obtain sufficient conditions for Lp − Lq boundedness of coinvariant linear operators. We provide necessary and sufficient conditions for algebraic differential calculi on Hopf subalgebras of compact quantum groups to extend to our proposed smooth subalgebra \({{C}^\infty_\mathcal {D}}\). We check explicitly that these conditions hold true on the quantum SU2q for both its 3-dimensional and 4-dimensional calculi.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Akylzhanov, R., Nursultanov, E., Ruzhansky, M.: (2015) Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and L p−L q multipliers on compact homogeneous manifolds. arXiv:1504.07043, (2015)

  2. Akylzhanov K.R., Nursultanov D.E., Ruzhanskiĭ V.M.: Hardy–Littlewood–Paley-type inequalities on compact Lie groups. Mat. Zametki 100(2), 287–290 (2016)

    Article  MathSciNet  Google Scholar 

  3. Akylzhanov R., Nursultanov E., Ruzhansky M.: Hardy–Littlewood–Paley inequalities and Fourier multipliers on SU(2). Studia Math. 234(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akylzhanov R., Ruzhansky M.: Fourier multipliers and group von Neumann algebras. C. R. Math. Acad. Sci. Paris 354(8), 766–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bekjan N.T., Chen Z.: Interpolation and \({\Phi}\)-moment inequalities of noncommutative martin gales. Probab. Theory Relat. Fields 152(1), 179–206 (2012)

    Article  MATH  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York. Grundlehren der Mathematischen Wissenschaften, No. 223 (1976)

  7. Beggs E., Majid S.: Spectral triples from bimodule connections and Chern connections. J. Noncommut. Geom. 11(2), 669–701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakraborty S.P., Pal A.: Characterization of SUq (l + 1)-equivariant spectral triples for the odd dimensional quantum spheres. J. Reine Angew. Math. 623, 25–42 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cipriani F., Franz U., Kula A.: Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory. J. Funct. Anal. 266(5), 2789–2844 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Connes A., Landi G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Comm. Math. Phys. 221(1), 141–159 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Connes A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Connes, A., Moscovici, H.: Type III and spectral triples. In: Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, pp. 57–71. Friedr. Vieweg, Wiesbaden (2008)

  14. Connes A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7, 1–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cooney T.: A Hausdorff–Young inequality for locally compact quantum groups. Int. J. Math. 21(12), 1619–1632 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dabrowski, L., Landi, G., Sitarz, A., Suijlekom, W.van, Värilly, C.J.: The Dirac operator on SU q 2. Commun. Math. Phys. 259(3), 729–759 (2005)

  17. Dijkhuizen S.M., Koornwinder H.: \({\mathbb{C}_{q} [\mathfrak{g}]}\) algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32(4), 315–330 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Figueroa H., Gracia-Bondia J., Varilly J.: Elements of Noncommutative Geometry. Birkhäuser, New York (2000)

    MATH  Google Scholar 

  19. Fiore G.: Deforming maps for Lie group covariant creation and annihilation operators. J. Math. Phys. 39(6), 3437–3452 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Folland, G.B.: Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition. Modern techniques and their applications, A Wiley-Interscience Publication (1999)

  21. Grothendieck A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16, 140 (1955)

    MATH  Google Scholar 

  22. Haagerup, U.: L p-spaces associated with an arbitrary von Neumann algebra. In Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274 of Colloq. Int. CNRS, pp. 175–184. CNRS, Paris (1979)

  23. Hardy G., Littlewood J.: Some theorems concerning Fourier series and Fourier power series. Duke Math.J. 2, 354–382 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hewitt E., Ross A.K.: Rearrangements of L r Fourier series on compact Abelian groups. Proc. Lond. Math. Soc. 29(3), 317–330 (1974)

    Article  MATH  Google Scholar 

  25. Junge M., Neufang M., Ruan Z.-J.: A representation theorem for locally compact quantum groups. Int. J. Math. 20(3), 377–400 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaad J., Senior R.: A twisted spectral triple for quantum SU(2). J. Geom. Phys. 62(4), 731–739 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kosaki H.: Applications of the complex interpolation method to a von Neumann algebra: non commutative L p-spaces. J. Funct. Anal. 56(1), 29–78 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lévy C., Neira Jiménez C., Paycha S.: The canonical trace and the noncommutative residue on the noncommutative torus. Trans. Amer. Math. Soc. 368(2), 1051–1095 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lichnerowicz A.: Spineurs harmoniques et spineurs-twisteurs en géométrie kählerienne et conformément kählerienne. C. R. Math. Acad. Sci. Paris. 311(13), 883–887 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Liu Z., Wang S., Wu J.: Young’s inequality for locally compact quantum groups. J. Op. Theory 77(1), 109–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  32. Majid S.: Noncommutative Ricci curvature and Dirac operator on Cq [SL2] at roots of unity. Lett. Math. Phys. 63(1), 39–54 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Majid S.: Hodge star as braided Fourier transform. Algebr. Represent. Theory 20, 695–733 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Majid, S.: Noncommutative differential geometry. In: Bullet T.F.S., Smith, F. (eds) LTCC Lecture Notes Series: Analysis and Mathematical Physics, pp. 139–176. World Scientific, Singapore (2017)

  35. Masuda T., Mimachi K., Nakagami Y., Noumi M., Ueno K.: Representations of the quantum group SU q (2) and the little q-Jacobi polynomials. J. Funct. Anal. 99(2), 357–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maes A., Van Daele A.: Notes on compact quantum groups. Nieuw Arch. Wisk. (4) 16(1-2), 73–112 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Neshveyev S., Tuset L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 2010(641), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruzhansky M., Turunen V.: Pseudo-differential operators and symmetries, volume 2 of Pseudo- Differential Operators Theory and Applications. . Birkhäuser Verlag, Basel. (2010) Background analysis and advanced topics.

    Book  MATH  Google Scholar 

  39. Ruzhansky M., Turunen V.: Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces. Int. Math. Res. Not. IMRN. 11, 2439–2496 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ruzhansky M., Tokmagambetov N.: Nonharmonic analysis of boundary value problems. Int. Math. Res. Not. IMRN. 12, 3548–3615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thierry F., Kosaki H.: Generalized s-numbers of \({\tau}\)-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trèves, F., Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  43. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  44. Woronowicz L.S.: Compact matrix pseudogroups. Comm. Math. Phys. 111(4), 613–665 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Woronowicz L.S.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1), 125–170 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Woronowicz, L.S.: Compact quantum groups. In: Symétries Quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)

  47. Xu, Q.: Operator spaces and noncommutative lp. The part on non-commutative Lp -spaces. Lectures in the Summer School on Banach spaces and Operator spaces, Nankai University-China (2007)

  48. Youn S.-G.: Hardy–Littlewood inequalities on compact quantum groups of Kac type. Anal. PDE. 11(1), 237–261 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Imperial College London, London, UK

    Rauan Akylzhanov, Shahn Majid & Michael Ruzhansky

Authors
  1. Rauan Akylzhanov
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Shahn Majid
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Michael Ruzhansky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rauan Akylzhanov.

Additional information

Communicated by C. Schweigert

The first and third authors were supported in parts by the EPSRC Grant EP/R003025/1 and by the Leverhulme Grant RPG-2017-151. The first author was also partially supported by the Simons-Foundation Grant 346300 and the Polish Government MNiSW 2015–2019 matching fund. No new data was created or generated during the course of this research.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akylzhanov, R., Majid, S. & Ruzhansky, M. Smooth Dense Subalgebras and Fourier Multipliers on Compact Quantum Groups. Commun. Math. Phys. 362, 761–799 (2018). https://doi.org/10.1007/s00220-018-3219-4

Download citation

  • Received: 31 July 2017

  • Accepted: 03 June 2018

  • Published: 13 August 2018

  • Issue Date: September 2018

  • DOI: https://doi.org/10.1007/s00220-018-3219-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.