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Abstract: We define and study dense Frechet subalgebras of compact quantum groups
realised as smooth domains associatedwith aDirac type operatorwith compact resolvent.
Further, we construct spectral triples on compact matrix quantum groups in terms of
Clebsch–Gordon coefficients and the eigenvalues of the Dirac operatorD. Grotendieck’s
theory of topological tensor products immediately yields a Schwartz kernel theorem for
linear operators on compact quantum groups and allows us to introduce a natural class of
pseudo-differential operators on them. It is also shown that regular pseudo-differential
operators are closed under compositions. As a by-product, we develop elements of the
distribution theory and corresponding Fourier analysis. We give applications of our
construction to obtain sufficient conditions for L p − Lq boundedness of coinvariant
linear operators.We provide necessary and sufficient conditions for algebraic differential
calculi on Hopf subalgebras of compact quantum groups to extend to our proposed
smooth subalgebra C∞

D . We check explicitly that these conditions hold true on the
quantum SUq

2 for both its 3-dimensional and 4-dimensional calculi.

1. Introduction

In [HL36] Hardy and Littlewood proved the following generalisation of the Plancherel’s
identity on the circle T, namely

∑

m∈Z
(1 + |m|)p−2| f̂ (m)|p ≤ Cp‖ f ‖p

L p(T)
, 1 < p ≤ 2. (1.1)
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Hewitt and Ross [HR74] generalised this to the setting of compact abelian groups.
Recently, the inequality has been extended [ANR15a] to compact homogeneous mani-
folds. In particular, on a compact Lie group G of topological dimension n, the result can
be written as ∑

π∈Ĝ
dπ

p( 2
p − 1

2 )〈π〉n(p−2)‖ f̂ (π)‖p
HS ≤ Cp‖ f ‖p

L p(G), (1.2)

where 〈π〉 are obtained from eigenvalues of the Laplace operator �G on G by
√
I − �Gπi j = 〈π〉πi j , i, j = 1, . . . , dπ .

In [You08] the Hardy–Littlewood inequality has been extended to compact matrix
quantum groups of Kac type. For this purpose, the author introduced a natural length
function and extended the notion of ‘rapid decay’ to compact matrix quantum groups
of Kac type. On the other hand, the inequality (1.2) on a compact Lie group G can be
given a differential formulation as

‖FG(1 − �G)
n( 12− 1

p ) f ‖�p(Ĝ) ≤ Cp‖ f ‖L p(G), (1.3)

where �G is the Laplacian on G and FG is the group Fourier transform. In the view
of [Lic90], the operator I − �G is the square of the spinor Dirac operator restricted to
smooth functions on G. Thus, one can view the identity as associated to a ‘Dirac-like’
operator understood broadly.

The Dirac operator was first introduced in 1928 by Paul Dirac to describe the evo-
lution of fermions and bosons and plays an essential role in mathematical physics and
representation theory. The geometric Dirac operator D can be constructed on an arbitrary
spin Riemannian manifold (M, g) and Alain Connes showed [Con13] that most of the
geometry of (M, g) can be reconstructed from theDirac operator characterised abstractly
as a ‘spectral triple’ (C∞(M), D, L2

spin(M)). The axioms of a spectral triple in Connes’
sense come from KO-homology. However, it is known that q-deformed quantum groups
and homogeneous spaces do not fit into Connes axiomatic framework [Con95] if one
wants to have the correct classical limit and various authors have considered modifi-
cation of the axioms. Another problem is that of ‘geometric realisation’ where a given
spectral triple operator (understood broadly) should ideally have an interpretation as
built from a spin connection and Clifford action on a spinor bundle. A unified algebro-
geometric approach to this has been proposed in [BM15], starting with a differential
algebra structure on a possibly noncommutative ‘coordinate algebra’ and building up
the geometry layer by layer so as to arrive at a noncommutative-geometrically realised
D as an endpoint.

Compact quantum groups are quantisations of Poisson Lie groups, and it is natural
to expect that every compact quantum group should possess a spectral triple (A,H,D)

by a quantisation process of some sort. Following an approach suggested by [CL01],
Chakraborty and Pal constructed [CP08] a spectral triple on the quantum SUq

2 . A Dirac
operator agreeing with a real structure on SUq

2 has been suggested in [DLS+05], which
required a slight modification on the spectral triple axioms. More recently, inspired
in part by [Fio98], Nesheveyev and Tuset constructed [NT10] spectral triples on the
q-deformation Gq of a compact simply connected Lie group G. To the best of our
knowledge, it seems to be an open question whether there exists a spectral triple on an
arbitrary compact quantum groups. And there remains the question of linking proposed
spectral triples to the geometric picture. At the root of this problem is how to marry the
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analytic considerations of compact quantum groups to the differential-algebraic notion
of differential calculus in the more constructive approach.

An outline of the results is as follows. After the set-up in Sect. 2 of quantum group
Fourier transform, Paley-type inequalities in compact quantum groups G of Kac type
are developed in Sect. 3 following the classical case in [ANR15a]. Section 4 studies left
Fourier multipliers A (i.e. translation coinvariant operators) with associated symbol σA.
In Sect. 5 we introduce a ‘Dirac operator’ D : L2(G) → L2(G) defined by a sequence
{λπ } of eigenvalues according to the Peter–Weyl decomposition ofG. In Theorem 5.1we
obtain a formal version ofHardy–Littlewood inequaity (1.2) by applyingPaley inequality
(3.2) and write this in a differential form formulation

‖FG |D|β( 12− 1
p ) f ‖�p(Ĝ) ≤ Cp‖ f ‖L p(G), 1 < p ≤ 2,

where an unbounded D : L2(G) → L2(G) is defined by Dπ = λππ and |D|−β is trace
class.

This goes some way towards (G, L2(G),D) as a spectral triple in the sense of Alain
Connes, this being the case ifD has bounded commutators. We analyse in Theorem 5.3
when D defined by {λπ } is an actual spectral triple in the case of compact matrix
quantum group in the sense of Woronowicz [Wor87]. Theorem 5.3 is then illustrated
on the example of [CP08] on SUq

2 with eigenvalues ±(2l + 1) in the spin l part of the
decomposition.

Section 6 studies smooth domains C∞
D = ⋂

α>0 Dom(|D|α) associated with Dirac
operator D on compact quantum groups. We study elements of distributions and rapid
decay using C∞

D (G). Grotendieck’s theory of topological tensor products immediately
yields a Schwartz kernel theorem for linear operators on C∞

D (G) and allows us to intro-
duce a natural class of pseudo-differential operators in this context. In Theorem 6.13
the Schwartz kernel KAB of composition of two regular pseudo-differential operators
A, B : C∞

D → C∞
D is computed in terms of the kernels KA and KB . In Theorem 6.14 we

show that regular pseudo-differential operators acting via right-convolution kernel can
be represented by their global symbols (see Definition 6.11). A similar construction of
smooth domains for general operators in Hilbert spaces has been carried out in [RT16].

Section 7 looks at how this notion ofC∞
D relates to the algebraic notion of differential

1-forms in the algebraic side of noncommutative differential geometry. We show that
both the standard 3D left covariant and 4D bi-covariant differential calculi onC[SUq

2 ] in
[Wor89] extend to C∞

D if we take D with eigenvalues ±[2l + 1]q where [n]q = qn−q−n

q−q−1

is a q-integer. Thus our approach to ‘smooth functions’ is compatible with these q-
differential calculi, marrying the analytic and algebraic approaches. This q-deformed
choice of D no longer obeys the bounded commutators condition for a spectral triple
but is a natural q-deformation of our previous choice. On the other hand it is more
closely related to the natural q-geometrically-realised Dirac [Maj03] and square root
of a Laplace [Maj15] operators on SUq

2 which similarly have eigenvalues modified via
q-integers.

The authors wish to thank Yulia Kuznetsova for her advice and comments. We also
want to express our gratitude to the anonymous referees for their helpful suggestions.

2. Preliminaries

The notion of compact quantum groups has been introduced byWoronowicz in [Wor87].
Here we adopt the defintion from [Wor98].
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Definition 2.1. A compact quantum group is a pair (G,�) where G is a unital C∗-
algebra, � : G → G ⊗ G is a unital, 	-homomorphic map which is coassociative, i.e.

(� ⊗ IdG) ◦ � = (IdG ⊗�) ◦ �

and

span{(IdG ⊗G)�(G)} = span{(G ⊗ IdG)�(G)} = G ⊗ G,

where G ⊗ G is a minimal C∗-tensor product.
The map � is called the coproduct of G and it induces the convolution on the predual
L1(G),

λ ∗ μ := (λ ⊗ μ) ◦ �, λ,μ ∈ L1(G).

Definition 2.2. Let (G,�) be a compact quantum group. A finite-dimensional repre-
sentation π of (G,�) is a matrix [πi j ] in Mn(G) for some n such that

�πi j =
n∑

k=1

πik ⊗ πk j (2.1)

for all i, j = 1, . . . , n. We denote by Ĝ the set of all finite-dimensional irreducible
unitary representations of (G,�).

Here we denote by Mn(G) the set of n-dimensional matrices with entries in G.
Let C[G] denote the Hopf subalgebra space of G spanned by the matrix elements πi j
of finite-dimensional unitary representations π of (G,�). It can be shown [MVD98,
Proposition 7.1, Theorem 7.6] that C[G] is a Hopf ∗-algebra dense in G. Every element
f ∈ C[G] can be expanded in a finite sum

f =
∑

π∈I f

nπ∑

i, j=1

ci jπi j ,

where I f is a finite index set. It is sufficient to define the Hopf ∗-algebra structure on
C[G] on generators πi j as follows

ε(πi j ) = δi j , S(πi j ) = π∗
j i for π ∈ Ĝ, i, j = 1, . . . , nπ ,

where ε : C[G] → C is the counit and S : C[G] → C[G] is the antipode. These opera-
tions satisfy the usual compatiblity conditions with coproduct � and product mG.

Every compact quantum group possesses [DK94] a functional h onG called the Haar
state such that

(h ⊗ IdG) ◦ �(a) = h(a)1 = (IdG ⊗h) ◦ �(a).

For every π ∈ Ĝ there exists a positive invertible matrix Qπ ∈ C
nπ×nπ which is a

unique intertwiner in Hom(π, π∗) such that

Tr Qπ = Tr (Qπ )−1 > 0. (2.2)

We can always diagonalize matrix Qπ and therefore we shall write

Qπ = diag(qπ
1 , . . . , qπ

nπ
).
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It follows from (2.2) that
nπ∑

i=1

qπ
i =

nπ∑

i=1

1

qπ
i

=: dπ ,

which defines the quantum dimension dπ of π . If G is a compact quantum group of Kac
type, then dπ = nπ . The Peter–Weyl orthogonality relations are as follows

h((πi j )
∗π ′

kl) = δππ ′δikδ jl
1

dπqπ
k

,

h(πkl(π
′
i j )

∗) = δππ ′δikδ jl
qπ
j

dπ

.

(2.3)

The quantum Fourier transformFG : L1(G) → L∞(Ĝ) is given by

f̂ (π)i j = h( f π∗
j i ), i, j = 1, . . . , nπ , (2.4)

where L1(G) and L∞(Ĝ) are defined below. The inverse Fourier transformF−1
G

is given
by

f =
∑

π∈Ĝ
dπTr ((Q

π )−1π f̂ (π)) =
∑

π

nπ∑

i, j=1

dπ

qπ
i

π j i f̂ (π)i j .

From this it follows that {√dπqπ
i πi j : π ∈ Ĝ, 1 ≤ i, j ≤ nπ } is an orthonormal

basis in L2(G). The Plancherel identity takes the form

( f, g)L2(G) =
∑

π∈Ĝ
dπTr

(
(Qπ )−1 f̂ (π)ĝ(π)∗

)
. (2.5)

We denote by C(π) the coefficients subcoalgebra

C(π) = span{πi j }nπ

i, j=1.

The Peter–Weyl decomposition on the Hopf algebra C[G] is of the form
C[G] =

⊕

π∈Ĝ
C(π). (2.6)

Let L2(G) be the GNS-Hilbert space associated with the Haar weight h. We denote by
L∞(G) the universal von Neumann enveloping algebra of G. The coproduct � and the
Haar weight h can be uniquely extended to L∞(G). In general, there are two approaches
to locally compact quantum groups: C∗-algebraic and von Neumann-algebraic.

Let ψ be a normal semi-finite weight on the commutant [L∞(G)]′
of the von Neu-

mann algebra L∞(G). Let L1(G, ψ) be the set of all closed, densely defined operators A
with polar decomposition A = u |A| such that there exists positive φ ∈ L∞(G)∗ and its
spatial derivative dφ

dψ
= |A|. Setting ‖A‖L1(G) = φ(1) = ‖φ‖L∞(G)∗ yields an isometric

isomorphism between L1(G, ψ) and L∞(G)∗. Analogously, we denote by L p(G, ψ)

the set of all closed, densely defined operators x such that there exists φ ∈ L1(G, ψ)

such that |A|p = dφ
dψ

with the L p-norm given by ‖A‖L p(G) = φ(1)
1
p . These spaces are

isometrically isomorphic to the Haagerup L p-spaces [Haa79] and are thus independent
of the choice of ψ .

One can introduce the Lebesgue space �p(Ĝ) on the dual Ĝ as follows
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Definition 2.3. We shall denote by �p(Ĝ) the space of sequences {σ(π)}π∈Ĝ endowed
with the norm

‖σ‖�p(Ĝ) =
⎛

⎝
∑

π∈Ĝ
dπnπ

(‖σ(π)‖HS√
nπ

)p
⎞

⎠

1
p

, 1 ≤ p < ∞. (2.7)

Here by the Hilbert–Schmidt norm we mean

‖σ(π)‖2HS = Tr (Qπ )−1σ(π)σ (π)∗. (2.8)

For p = ∞, we write L∞(Ĝ) for the space of all σ such that

‖σ‖L∞(Ĝ) := sup
π∈Ĝ

‖σ(π)‖HS√
nπ

< ∞. (2.9)

It can be shown that these are interpolation spaces in analogy to a similar family
of spaces on the unitary dual of compact topological groups. The latter spaces were
introduced in [RT10]. In this notation we can rewrite (2.5) as

‖ f ‖2L2(G)
=
∑

π∈Ĝ
dπ‖ f̂ ‖2HS. (2.10)

It can be shown that FG : f �→ f̂ = { f̂ (π)} is a contraction, i.e.
‖ f̂ (π)‖op ≤ ‖ f ‖L1(G), π ∈ Ĝ. (2.11)

Using the Hilbert–Schmidt norm and unitarity ππ∗ = Id of π ’s, one can show

‖ f̂ (π)‖HS ≤ √
nπ‖ f ‖L1(G), π ∈ Ĝ. (2.12)

Hence, by the interpolation theorem for 1 < p ≤ 2we obtain two versions ofHausdorff–
Young inequality

⎛

⎝
∑

π∈Ĝ
dπ‖ f̂ (π)‖p′

�p(Cnπ ×nπ )

⎞

⎠

1
p′

=: ‖ f̂ ‖
�
p′
sch(Ĝ)

≤ ‖ f ‖L p(G), (2.13)

⎛

⎝
∑

π∈Ĝ
dπnπ

(‖ f̂ (π)‖HS√
nπ

)p′⎞

⎠

1
p′

=: ‖ f̂ ‖
�p

′
(Ĝ)

≤ ‖ f ‖L p(G). (2.14)

A Hausdorff–Young inequality on locally compact quantum groups has been obtained
in [Coo10] and its sharpness explored in [LWW17].

We also present a version of a Marcinkiewicz interpolation theorem for linear map-
pings between compact quantum group G of Kac type and the space of matrix-valued
sequences � that will be realised via

� := {σ = {σ(π)}π∈Ĝ, σ (π) ∈ C
nπ×nπ

}
.

Thus, a linear mapping A : L∞(G) → � takes a function to a matrix valued sequence,
i.e.

f �→ A f =: σ = {σ(π)}π∈Ĝ,
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where

σ(π) ∈ C
nπ×nπ , π ∈ Ĝ.

We say that a linear operator A is of strong type (p, q), if for every f ∈ L p(G), we have
A f ∈ �q(Ĝ, �) and

‖A f ‖�q (Ĝ,�) ≤ M‖ f ‖L p(G),

where M is independent of f , and the space �q(Ĝ, �) defined by the norm

‖σ‖�q (Ĝ,�) :=
⎛

⎝
∑

π∈Ĝ
n
p( 2

p − 1
2 )

π ‖σ(π)‖p
HS

⎞

⎠

1
p

(2.15)

as in (2.7). The least M for which this is satisfied is taken to be the strong (p, q)-norm
of the operator A.

Denote the distribution functions of f and σ byμG(t; f ) and ν
Ĝ
(y; σ), respectively,

i.e.

μG(t; f ) := h(E(t,+∞)(| f |)), t > 0, (2.16)

ν
Ĝ
(y; σ) :=

∑

π∈Ĝ‖σ(π)‖HS√
nπ

≥y

n2π , y > 0. (2.17)

Then

‖ f ‖p
L p(G)

= p

+∞∫

0

t p−1μG(t; f ) dt,

‖σ‖q
�q (Ĝ,�)

=
∑

π∈Ĝ
n2π

(‖σ(π)‖HS√
nπ

)q
= q

+∞∫

0

yq−1ν
Ĝ
(y; σ) dy.

A linear operator A : L∞(G) → � satisfying

ν
Ĝ
(y; A f ) ≤

(
M

y
‖ f ‖L p(G)

)q
(2.18)

is said to be of weak type (p, q); the least value of M in (2.18) is called weak (p, q)

norm of A.
Every operation of strong type (p, q) is also of weak type (p, q), since

y
(
ν
Ĝ
(y; A f )

) 1
q ≤ ‖A f ‖Lq (Ĝ) ≤ M‖ f ‖L p(G).

The classical Marcinkiewicz interpolation theorem [Fol99, Theorem 6.28] has a nat-
ural analogue [ANR16, Theorem 6.1] for compact Lie groups. As a special case of
[BC12, Theorem 2.1] we immediately obtain
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Theorem 2.4. Let 1 ≤ p1 < p < p2 < ∞. Suppose that a linear operator A from
Ł∞(G) to � is simultaneously of weak types (p1, p1) and (p2, p2), with norms M1 and
M2, respectively, i.e.

ν
Ĝ
(y; A f ) ≤

(
M1

y
‖ f ‖L p1 (G)

)p1
, (2.19)

ν
Ĝ
(y; A f ) ≤

(
M2

y
‖ f ‖L p2 (G)

)p2
. (2.20)

Then for any p ∈ (p1, p2) the operator A is of strong type (p, p) and we have

‖A f ‖�p(Ĝ,�) ≤ M1−θ
1 Mθ

2 ‖ f ‖L p(G), 0 < θ < 1, (2.21)

where
1

p
= 1 − θ

p1
+

θ

p2
.

A different special case of [BC12, Theorem 2.1] has been presented in [You08].

3. Hausdorff–Young–Paley Inequalities

A Paley-type inequality for the group Fourier transform on commutative compact quan-
tum group G = C(G) has been obtained in [ANR15a]. Here we give an analogue of
this inequality on an arbitrary compact quantum group G of Kac type.

Theorem 3.1 (Paley-type inequality). Let 1 < p ≤ 2 and let G be a compact quantum
group of Kac type. If ϕ(π) is a positive sequence over Ĝ such that

Mϕ := sup
y>0

y
∑

π∈Ĝ
ϕ(π)≥y

n2π < ∞ (3.1)

is finite, then we have
⎛

⎝
∑

π∈Ĝ
n2π

(‖ f̂ (π)‖HS√
nπ

)p

ϕ(π)2−p

⎞

⎠

1
p

� M
2−p
p

ϕ ‖ f ‖L p(G). (3.2)

The main tool in the proof of Theorem 3.1 is a noncommutative version of the
Marcinkiewicz interpolation Theorem 2.4). Following the classical case in [ANR16]
and [ANR15a], Youn obtained [You08] a different version of Paley type inequalities on
compact quantum groups of Kac type.

Theorem 3.2 (Hausdorff–Young–Paley inequality). Let 1 < p ≤ b ≤ p′ < ∞ and
let G be a compact quantum group of Kac type. If a positive sequence ϕ(π), π ∈ Ĝ,
satisfies the condition

Mϕ := sup
y>0

y
∑

π∈Ĝ
ϕ(π)≥y

n2π < ∞, (3.3)

then we have
⎛

⎝
∑

π∈Ĝ
n2π

(‖ f̂ (π)‖HS√
nπ

ϕ(π)
1
b− 1

p′
)b
⎞

⎠

1
b

� M
1
b− 1

p′
ϕ ‖ f ‖L p(G). (3.4)
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Further, we recall a result on the interpolation of weighted spaces from [BL76]:

Theorem 3.3 (Interpolation of weighted spaces). Let us write dμ0(x) = ω0(x)dμ(x),
dμ1(x) = ω1(x)dμ(x), and write L p(ω) = L p(ωdμ) for the weight ω.
Suppose that 0 < p0, p1 < ∞. Then

(L p0(ω0), L
p1(ω1))θ,p = L p(ω),

where 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, and ω = w

p 1−θ
p0

0 w
p θ
p1

1 .

From this, interpolating between the Paley-type inequality (3.2) in Theorem 3.1 and
Hausdorff–Young inequality (2.13), we obtain Theorem 3.2. Hence, we concentrate on
proving Theorem 3.1. The proof of Theorem 3.1 is an adaptation of the techniques used
in [ANR15a].

Proof of Theorem 3.1. Let μ give measure ϕ2(π)n2π , π ∈ Ĝ to the set consisting of the
single point {π}, π ∈ G, and measure zero to a set which does not contain any of these
points, i.e.

μ{π} := ϕ2(π)n2π .

We define the space L p(G, μ), 1 ≤ p < ∞, as the space of complex (or real) sequences
a = {al}l∈Ĝ such that

‖a‖L p(G,μ) :=
(∑

l∈Ĝ
|al |pϕ2(π)n2π

) 1
p

< ∞. (3.5)

We will show that the sub-linear operator

T : L p(G) � f �→ T f = a =
{‖ f̂ (π)‖HS√

nπϕ(π)

}

π∈Ĝ
∈ L p(Ĝ, μ)

is well-defined and bounded from L p(G) to L p(Ĝ, μ) for 1 < p ≤ 2. In other words,
we claim that we have the estimate

‖T f ‖L p(Ĝ,μ) =
(
∑

π∈G

(‖ f̂ (π)‖HS√
nπϕ(π)

)p

ϕ2(π)n2π

) 1
p

� K
2−p
p

ϕ ‖ f ‖L p(G),

which would give (3.2) and where we set Kϕ := supy>0 y
∑

π∈G
ϕ(π)≥y

n2π . We will show

that A is of weak type (2,2) and of weak-type (1,1). More precisely, with the distribution
function

νG(y; T f ) =
∑

π∈Ĝ|T f (π)|≥y

ϕ2(π)n2π

we show that

νG(y; T f ) ≤
(
M2‖ f ‖L2(G)

y

)2
with norm M2 = 1, (3.6)
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νG(y; T f ) ≤ M1‖ f ‖L1(G)

y
with norm M1 = Kϕ. (3.7)

Then (3.2) will follow by the Marcinkiewicz interpolation Theorem 2.4). Now, to show
(3.6), using Plancherel’s identity (2.10), we get

y2νG(y; T f ) ≤ ‖T f ‖2L2(G,μ)
=
∑

π∈Ĝ

(‖ f̂ (π)‖HS√
nπϕ(π)

)2
ϕ2(π)n2π

=
∑

π∈Ĝ
nπ‖ f̂ (π)‖2HS = ‖ f̂ ‖2

�2(Ĝ)
= ‖ f ‖2L2(G)

.

Thus, T is of type (2,2) with norm M2 ≤ 1. Further, we show that T is of weak-type
(1,1) with norm M1 = C ; more precisely, we show that

νG{π ∈ Ĝ : ‖ f̂ (π)‖HS√
nπϕ(π)

> y} � Kϕ

‖ f ‖L1(G)

y
. (3.8)

The left-hand side here is the weighted sum
∑

ϕ2(π)n2π taken over those π ∈ Ĝ for

which
‖ f̂ (π)‖HS√
nπϕ(π)

> y.

From definition of the Fourier transform it follows that

‖ f̂ (π)‖HS ≤ √
nπ‖ f ‖L1(G).

Therefore, we have

y <
‖ f̂ (π)‖HS√
nπϕ(π)

≤ ‖ f ‖L1(G)

ϕ(π)
.

Using this, we get

{
π ∈ Ĝ : ‖ f̂ (π)‖HS√

nπϕ(π)
> y

}
⊂
{
π ∈ Ĝ : ‖ f ‖L1(G)

ϕ(π)
> y

}

for any y > 0. Consequently,

μ

{
π ∈ Ĝ : ‖ f̂ (π)‖HS√

nπϕ(π)
> y

}
≤ μ

{
π ∈ Ĝ : ‖ f ‖L1(G)

ϕ(π)
> y

}
.

Setting v := ‖ f ‖L1(G)

y , we get

μ

{
π ∈ Ĝ : ‖ f̂ (π)‖HS√

nπϕ(π)
> y

}
≤
∑

π∈Ĝ
ϕ(π)≤v

ϕ2(π)n2π . (3.9)

We claim that ∑

π∈Ĝ
ϕ(π)≤v

ϕ2(π)n2π � Kϕv. (3.10)
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In fact, we have

∑

π∈Ĝ
ϕ(π)≤v

ϕ2(π)n2π =
∑

π∈Ĝ
ϕ(π)≤v

n2π

ϕ2(π)∫

0

dτ.

We can interchange sum and integration to get

∑

π∈Ĝ
ϕ(π)≤v

n2π

ϕ2(π)∫

0

dτ =
v2∫

0

dτ
∑

π∈Ĝ
τ
1
2 ≤ϕ(π)≤v

n2π .

Further, we make a substitution τ = y2, yielding

v2∫

0

dτ
∑

π∈Ĝ
τ
1
2 ≤ϕ(π)≤v

n2π = 2

v∫

0

y dy
∑

π∈Ĝ
y≤ϕ(π)≤v

n2π ≤ 2

v∫

0

y dy
∑

π∈Ĝ
y≤ϕ(π)

n2π .

Since

y
∑

π∈Ĝ
y≤ϕ(π)

n2π ≤ sup
y>0

y
∑

π∈Ĝ
y≤ϕ(π)

n2π =: Kϕ

is finite by the definition of Kϕ , we have

2

v∫

0

y dy
∑

π∈Ĝ
y≤ϕ(π)

n2π � Kϕv.

This proves (3.10). We have just proved inequalities (3.6), (3.7). Then by using
Marcinkiewicz’ interpolation theorem (see Theorem 2.4) with p = 1, q = 2 and 1

p =
1 − θ + θ

2 we now obtain

⎛

⎝
∑

π∈Ĝ

(‖ f̂ (π)‖HS√
nπϕ(π)

)p

ϕ2(π)n2π

⎞

⎠

1
p

= ‖T f ‖L p(Ĝ) � K
2−p
p

ϕ ‖ f ‖L p(G).

This completes the proof. ��
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4. Fourier Multipliers on Compact Quantum Groups

Definition 4.1. Let (G,�) be a compact quantum group. A linear operator
A : G → G is called a left Fourier multiplier if

� ◦ A = (Id⊗A) ◦ �. (4.1)

For a compact topological group this means an operator that commutes with left trans-
lation on the group and defines a global symbol σA of A.

Theorem 4.2. Let G be a compact quantum group and let A : G → G be a left Fourier
multiplier. Then

Â f (π) = σA(π) f̂ (π), f ∈ L2(G), (4.2)

where σA(π) ∈ C
nπ×nπ are defined by Aπ = πσA(π).

Proof of Theorem 4.2. By the Peter–Weyl decomposition (2.6), it is sufficient to estab-
lish (4.2) on the coefficient sub-colagebra C(π). Suppose A is left invariant and write

Aπi j =
∑

π ′∈Ĝ

nπ∑

i,k=1

π ′
klc

π ′
i jkl

for some coefficients cπ ′
i jkl . Then by left invariance,

�Aπi j =
∑

π ′,k,l,m
cπ ′
i jklπ

′
km ⊗ π ′

ml = (id⊗A)�πi j

=
∑

m

πim ⊗ Aπmj =
∑

m

∑

l,k

Cπ ′
mjklπim ⊗ π ′

kl

Comparing these, by the Peter–Weyl decomposition, we see that only π ′ = π can
contribute. Moreover, since the {πi j } are a basis of C(π) we must have cπ

i jkl = 0 unless
k = i . So we have

∑
l,m cπ

i j ilπim ⊗ πml = ∑m πim ⊗ Aπmj . Comparing these we see
that

Aπmj =
∑

l

πmlσA(π)l j

from some matrix σA(π)l j = cπ
i j il which can not depend on i . Finally, setting f = πkl

we have

π̂kl(π
′)i j = h(πklπ

′∗
j i ) = δπ,π ′

qπ
k

dπ

δk jδli ,

and we check that

Âπkl(π
′)i j =

∑

m

π̂km(π ′)i jσA(π)ml = δπ,π ′
qπ
k

dπ

δk jσA(π)il ,

(σA(π ′)π̂kl(π
′))i j =

∑

m

σA(π ′)im π̂kl(π
′)mj = σA(π)ilδπ,π ′

qπ
k

dπ

δk j ,

which is the same. This proves Theorem 4.3. ��
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Essentially similar arguments can be found in an earlier paper by [CFK14]. Also note
from the proof that the same result applies to any coinvariant linear map A : C[G] →
C[G]. We refer to the operators A acting in this way on the Fourier side as quantum
Fourier multipliers. In greater generality, such result was also shown in [JNR09] for
every locally compact quantum group; the authors thank the referee for pointing out this
reference. In the classical situation on G = T

n , left Fourier multipliers are essentially
operators acting via convolution with measures whose Fourier coefficients are bounded.

Let A : G → G be a left Fourier multiplier. We are concerned with the question of
what assumptions on the symbol σA guarantee that A is bounded from L p(G) to Lq(G).

Theorem 4.3. LetG be a compact quantum group of Kac type. Let 1 < p ≤ 2 ≤ q < ∞
and let A : L2(G) → L2(G) be a left Fourier multiplier. Then we have

‖A‖L p(G)→Lq (G) � sup
s>0

s

⎛

⎜⎜⎝
∑

π∈Ĝ‖σA(π)‖op>s

n2π

⎞

⎟⎟⎠

1
p − 1

q

. (4.3)

Proof of Theorem 4.3. By definition

Â f (π) = σA(π) f̂ (π). (4.4)

Let us first assume that p ≤ q ′ (where 1
q + 1

q ′ = 1). Since q ′ ≤ 2, for f ∈ C[G] the
Hausdorff–Young inequality gives

‖A f ‖Lq (G) ≤ ‖ Â f ‖
�q

′
(Ĝ)

= ‖σA f̂ ‖
�q

′
(Ĝ)

=
⎛

⎝
∑

π∈Ĝ
n2π

(‖σA(π) f̂ (π)‖HS√
nπ

)q ′⎞

⎠

1
q′

≤
(
∑

π∈G
n2π‖σA(π)‖q ′

op

(‖ f̂ (π)‖HS√
nπ

)q ′) 1
q′

.

(4.5)

The case q ′ ≤ (p′)′ can be reduced to the case p ≤ q ′ as follows. The L p-duality yields

‖A‖L p(G)→Lq (G) = ‖A∗‖Lq′
(G)→L p′ (G)

. (4.6)

The symbol σA∗(π) of the adjoint operator A∗ equals to σ ∗
A(π),

σA∗(π) = σ ∗
A(π), π ∈ Ĝ, (4.7)

and its operator norm ‖σA∗(π)‖op equals to ‖σA(π)‖op. Now, we are in a position to
apply Theorem 3.2. Set 1

r = 1
p − 1

q . We observe that with σ(π) := ‖σA(π)‖rop Idπ , π ∈
Ĝ, and b = q ′, the assumptions of Theorem 3.2 are satisfied and we obtain

⎛

⎝
∑

π∈Ĝ
n2π‖σA(π)‖q ′

op

(‖ f̂ (π)‖HS√
nπ

)q ′⎞

⎠

1
q′

�

⎛

⎜⎜⎜⎝sups>0
s

∑

π∈Ĝ‖σ(π)‖rop>s

n2π

⎞

⎟⎟⎟⎠

1
r

‖ f ‖L p(G)
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for all f ∈ L p(G), in view of 1
q ′ − 1

p′ = 1
p − 1

q = 1
r . Thus, for 1 < p ≤ 2 ≤ q < ∞,

we obtain

‖A f ‖Lq (G) �

⎛

⎜⎜⎜⎝sups>0
s

∑

π∈Ĝ‖σ(π)‖rop>s

n2π

⎞

⎟⎟⎟⎠

1
r

‖ f ‖L p(G). (4.8)

Further, it can be easily checked that

⎛

⎜⎜⎜⎝sups>0
s

∑

π∈Ĝ‖σ(π)‖rop>s

n2π

⎞

⎟⎟⎟⎠

1
r

=

⎛

⎜⎜⎜⎜⎝
sup
s>0

s
∑

π∈Ĝ
‖σA(π)‖op>s

1
r

n2π

⎞

⎟⎟⎟⎟⎠

1
r

=

⎛

⎜⎜⎝sup
s>0

sr
∑

π∈Ĝ‖σA(π)‖op>s

n2π

⎞

⎟⎟⎠

1
r

= sup
s>0

s

⎛

⎜⎜⎝
∑

π∈Ĝ‖σA(π)‖op>s

n2π

⎞

⎟⎟⎠

1
r

,

where in the last equality we used the continuity of the s
1
r . ��

5. Hardy–Littlewood Inequality and Spectral Triples

As a corollary of Theorem 3.1, we obtain a formal compact quantum group version of
the Hardy–Littlewood inequality by using a suitable sequence {λπ }. This is formal in
the sense that we do not study underlying inherent geometric data, but nevertheless by
formulating this data in terms of an operator D our quantum Hardy–Littlewood type
inequality (5.2) presents in a manner similar to the compact Lie group inequality (1.3).

Theorem 5.1. Let 1 < p ≤ 2 and let G be a compact quantum group of Kac type.
Assume that a sequence {λπ }π∈Ĝ grows sufficiently fast, that is,

∑

π∈Ĝ

n2π
|λπ |β < ∞. (5.1)

Then we have
∑

π∈Ĝ
n2π |λπ |β(p−2)

(‖ f̂ (π)‖HS√
nπ

)p

� ‖ f ‖p
L p(G)

. (5.2)

In terms of an unbounded D : L2(G) → L2(G) defined by Dπ = λππ , (5.1) and (5.2)
are respectively equivalent to |D|−β trace class and

‖FG |D|β( 12− 1
p ) f ‖�p(Ĝ) ≤ Cp‖ f ‖L p(G). (5.3)
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Proof of Theorem 5.1. By the construction

C :=
∑

π∈Ĝ

n2π
|λπ |β < +∞. (5.4)

Then we have

C ≥
∑

π∈Ĝ
|λπ |β≤ 1

t

n2π
|λπ |β ≥ t

∑

π∈Ĝ
|λπ |β≤ 1

t

n2π = t
∑

π∈Ĝ
1

|λπ |β ≥t

n2π .

Then by Theorem 3.1, we get (5.2). For the second part, we equivalently view {λπ } as
defining an operator D and in the case of Kac type, summability with power β reduces
to condition (5.1). Clearly,

|D|β( 12− 1
p )

πi j = |λπ |β( 12− 1
p )

πi j .

Using this and the right-hand side in inequality (5.2), we obtain (5.3). ��
Although the operator D is not immediately geometric, it can fit into Connes non-

commutative geometric framework of a ‘spectral triple’.

Definition 5.2. A spectral triple (A,H,D) is a triple consisting of an associative ∗-
subalgebra A of the algebra B(H) of bounded operators in a separable Hilbert spaceH
and a linear unbounded self-adjoint operator D : H → H with compact resolvent and
such that such that

A � a �→ ∂(a) := [D, a] ∈ B(H). (5.5)

A spectral triple (A,H,D) is called summable if |D|−β is trace-class for some β ≥ 0.
The infimum of β ∈ R+ such that |D|−β+ε is trace-class for every ε > 0 is called the
spectral dimension [Con96].

Definition 5.2 is very minimal in the sense that we do not impose any conditions on
reality and chirality operators and their interrelations withD as in [Con95]. It is certainly
possible for D in Theorem 5.1 to obey the further boundedness condition for a spectral
triple in the Kac type case, a topic to be explored further elsewhere.

For now, we turn to an explicit construction of spectral triples more relevant to q-
deformed examples. If πk, π s ∈ Ĝ (with labels as shown) then the tensor product
πk⊗π s is a completely reducible finite-dimensional representation. Thematrix elements
of πk ⊗ π s are given by

πk ⊗ π s = [πk
i jπ

s
pr ]nk ,nsi, j=1,p,r=1.

We shall define the coefficients Cksw
i j prut as follows

Cksw
i j prut = (πk

i jπ
s
pr , π

w
ut )L2(G). (5.6)

It then follows from (5.6)

πk
i jπ

s
pr =

∑

w∈Iks

nm∑

u,t=1

Cksw
i j prutπ

w
ut , (5.7)
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where Iks is a finite subset ofN. TheseClebsch-Gordan coefficients are important towrite
down the action of the commutator ∂(a) = [D, a] explicitly. In [CP08], these coefficients
were computed for the quantum groups SUq

2l+1, allowing the authors compute the action
of the left multiplication operator on L2(SUq

2l+1) and leading in turn to growth restriction
on the eigenvaluesλk . In order to consider thismore generally, we take a slightly different
approach and leave the Clebsch-Gordan coefficients in the bound as they depend on the
compact quantum group.

It is convenient, however, to focus on the compactmatrix quantumgroup case [Wor87,
MVD98]. Here there is a matrix of generators umn of C[G] corresponding to a defining
unitary representation. We can expand them as

umn =
∑

k

∑

i j

α
i jk
mnπ

k
i j . (5.8)

It can be clearly seen from the Peter–Weyl decomposition that there are only finitely
many non-zero α

i jk
mn for each generator umn . These coefficients are closely related to the

Clebsch-Gordan coefficients.

Theorem 5.3. Let (G,�) be a compactmatrix quantumgroup andD : L2(G) → L2(G)

the unbounded linear operator given byDπk
i j = λkπ

k
i j . Then (G, L2(G),D) is a spectral

triple if and only if
√√√√
∑

i, j,k

|λk − λs |2
∑

w∈Iks

nw∑

t=1

∣∣∣αi jk
mnCksw

i j pr tt

∣∣∣
2 qw

t

dπw
≤ C

√
qsr
dπ s

(5.9)

holds for all s,m, n, r and some constant C.

Example 5.4 (Equivariant spectral triples on the quantum SUq
n ). Condition (5.9) imposes

certain growth condition on consecutive differences
∣∣λk − λs(k)

∣∣ of the eigenvalues λk .
For G = SUq

n , it is possible to compute [CP08] the coefficients Cksm
i jprut . In more detail,

the authors showed that the Cksm
i jprtt ’s are essentially powers of q, i.e.

Cksm
i jprtt = qC

′
, (5.10)

where the exponent C ′ = C ′(k, s,m, i, k, p, r, t) is determined by k, s,m. For more
details we refer to [CP08, pp. 30-32].

Proof of Theorem 5.3. The generators umn are dense inC[G]. Therefore we concentrate
on showing that the commutator

∂(a) : H � b �→ ∂(a)b = [D, a]b ∈ H (5.11)

is bounded on umn if and only if condition (5.9) is true. Let umn ∈ C[G], π s ∈ Ĝ and
take a = umn and b = π s

pr . The action of D on umn is as follows

Dumn =
∑

k

λk
∑

i j

α
i jk
mnπ

k
i j . (5.12)

Assume that ∂(a) = [D, ·] is bounded for all a ∈ C[G], i.e.
‖∂(a)b‖L2(G) ≤ Ca‖b‖L2(G), b ∈ C[G]. (5.13)
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In particular, for a = umn ∈ C[G] and b = π s
pr ∈ C[G], we get

‖∂(umn)π
s
pr‖L2(G) ≤ Ca‖π s

pr‖L2(G). (5.14)

Then by the direct computation
∥∥∥∂(umn)π

s
pr

∥∥∥
2

L2(G)
= ‖(Dumn)π

s
pr − ui j (Dπ s

pr )‖2L2(G)

=
∥∥∥

⎛

⎝
∑

k

λk
∑

i j

α
i jk
mnπ

k
i j

⎞

⎠π s
pr − λs

∑

k

∑

i j

α
i jk
mnπ

k
i jπ

s
pr

∥∥∥
2

L2(G)

=
∑

i, j,k

|λk − λs |2 ‖πk
i jπ

s
pr‖2L2(G)

=
∑

i, j,k

|λk − λs |2
∑

w∈Iks

nw∑

t=1

∣∣∣αi jk
mnC

ksw
i j pqtt

∣∣∣
2 qw

t

dπw
.

(5.15)

Using that

‖π s
pr‖2L2(G)

= qsr
dπr

and (5.15), we obtain (5.9). The converse is also true. Indeed, writing inequality (5.15)
in the reverse order, we get (5.14). ��
Example 5.5. Let G = C(G) where G is a compact Lie group. One can take D =√
1 − �G where �G is the Laplacian on G.

Example 5.6 ([CP08]). Let G = SUq
2 and L2(SUq

2 ) be the GNS-space. LetD be a Dirac

operator operator acting on the entries t li j of the irreducible corepresentations t
l ∈ ̂SUq

2

of SUq
2 as follows

Dt li j = ±(2l + 1)t li j , i, j = 0,
1

2
, . . . , l, l ∈ 1

2
N0. (5.16)

In this example, we have C∞
D = SUq

2 . The Chern character corresponding to (SUq
2 ,

L2(SUq
2 ),D) is non-trivial [CP08].

We do not consider β-summability in Theorem 5.3. It is known to hold for some β

in the case of Example 5.6, see [CP08]. Also note that we cannot immediately apply
Theorem 5.3 toG = SUq

2 with λk given more naturally by q-integers as we will do later.
Indeed, it has been already observed in [Con08] that standard quantum group examples
do not very naturally fit into the classical theory of spectral triples, which may need to
be replaced by a twisted version for example in the commutator (5.11). In this context
it is also possiblel to demand a ‘quantum summability’ condition

∑

k∈N

d2k
|λk |β

< +∞ (5.17)

for some β > 0, i.e. with respect to a modified ‘quantum’ trace. This reduces correctly
for classical compact Lie groups and compact quantum groups of Kac type, and also
holds for G = SUq

2 if we use q-integers for the λk but not if we use the classical values
in Example 5.6.
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6. Schwartz Kernels

Definition 6.1 (Smoothdomain). LetGbe a compact quantumgroupand letD : C[G] →
C[G] be a linear map extended to L2(G) → L2(G) as a closed unbounded linear oper-
ator. Then the smooth domain C∞

D ⊂ G of D is defined as follows

C∞
D :=

⋂

α≥0

Dom(|D|α).

The Frechet structure is given by the seminorms

‖ϕ‖α = ‖ |D|α ϕ‖L2(G), ϕ ∈ C∞
D , α ≥ 0. (6.1)

The powers |D|α are defined by the spectral theorem. It can be checked that C∞
D is

a locally convex topological vector space.
We show that every linear operator A : C∞

D → C∞
D continuous with respect to the

Frechet topology can be associated with a distribution KA ‘acting’ on G × G. In other
words, every linear continuous operator A : C∞

D → C∞
D possesses a Schwartz kernel

KA. This allows us to define the global symbol of A in line with the pseudo-differential
calculus on compact Lie groups [RT13,RT10]. The global symbols have been recently
studied [LNJP16] on the quantum tori T

n
θ , n ∈ N, θ ∈ R.

Definition 6.2 (Rapidly decreasing functions on Ĝ).Denote byS(Ĝ) the spaceofmatrix-
valued sequences {σ(π)}, σ (π) ∈ C

nπ×nπ satisfying the conditions

S(Ĝ) =
⎧
⎨

⎩σ = {σ(π)}π∈Ĝ :
∑

π∈Ĝ
dπ |λπ |2α ‖σ(π)‖2HS < +∞ for any α ≥ 0

⎫
⎬

⎭ .

The space S(Ĝ) becomes a locally convex topological space if we endow it with the
norms

pα(σ ) :=
⎛

⎝
∑

π∈Ĝ
dπ |λπ |2α ‖σ(π)‖2HS

⎞

⎠

1
2

, α ≥ 0. (6.2)

The construction of the topology on C∞
D (G) readily implies that the quantum Fourier

transformFG is a homeomorphism between C∞
D and S(Ĝ).

Definition 6.3 (Distributions). Let us denote by S ′(G) the space [C∞
D (G)]∗ of all linear

functionals continuous with respect to the topology on C∞
D (G), i.e.

S ′(G) := [C∞
D (G)]∗.

Let us denote by S ′(Ĝ) the space [S(Ĝ)]∗ of all linear linear continuous functionals on
S(Ĝ), i.e.

S ′(Ĝ) := [S(Ĝ)]∗.
Definition 6.4. For any distribution u ∈ S ′(Ĝ) its Fourier transform û is a distribution
on C∞

D (G) given by

û( f̂ ) := u( f ), f̂ ∈ S(Ĝ), f ∈ C∞
D (G).
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Proposition 6.5. A linear function u on C∞
D is a distribution, if and only if, there exists

a constant C and a number α ≥ 0 such that

|u( f )| ≤ C

⎛

⎝
∑

π∈Ĝ
dπ |λπ |2α ‖ f̂ (π)‖2HS

⎞

⎠

1
2

,

for every f ∈ C∞
D (G).

Proposition 6.6. The space S ′(G) is complete, i.e. for every Cauchy sequence {un} ⊂
S ′(G) the limit

u = lim un ∈ S ′(G)

exists and belongs to S ′(G). If ϕn converges to ϕ in C∞
D , then

lim
n

un(ϕn) = u(ϕ).

Both of these are by standard methods and hold in the general situation[Tre67]. By
transposing the inverse Fourier transformF−1

G
: S(Ĝ) → C∞

D (G), the Fourier transform
FG extends uniquely to a mapping

FG : S ′(G) → S ′(Ĝ)

by the formula
FG[u](σ ) = u(F−1

G
[σ ]), u ∈ S ′(G).

In other words, for every distribution u ∈ S ′(G) its Fourier transform FG[u] is a
distribution on S(Ĝ).

Definition 6.7. For any distribution u ∈ S ′(G) its Fourier transform û is a distribution
on S ′(Ĝ) given by

û(σ ) := u(F−1
G

(σ )), σ ∈ S(Ĝ).

Proposition 6.8. Let (G,�) be a compact quantum group and let |D|−β be of trace
class for some β > 0. Then the Frechet space C∞

D is nuclear.

Proof of Proposition 6.8. It is sufficient to prove that S(Ĝ) is a nuclear Frechet space
sinceFG is a homeomorphism. The former fact follows from [Tri78, Section 8.2.1]. ��

The theory of topological vector spaces has been significantly developed [Gro55] by
Alexander Grothendieck. It turns out that the property of being nuclear is crucial and
these spaces are ‘closest’ to finite-dimensional spaces. The nuclearity is the necessary
and sufficient condition for the existence of abstract Schwartz kernels.

The topological tensor product preserves nuclearity [Tre67].

Definition 6.9. A linear continuous operator A : C∞
D (G) �→ S ′(G) is called a pseudo-

differential operator.

From the abstract Schwartz kernel theorem [Tre67], we readily obtain

Theorem 6.10. Let D be as in Proposition 6.8. Let A : C∞
D → S ′(G) be a pseudo-

differential operator. Then there is a distribution KA ∈ S ′(G)⊗̂S ′(G) such that

C∞
D � ϕ �→ Aϕ ∈ S ′(G), ϕ → (Aϕ)(ψ) = KA(ϕ ⊗ ψ), ψ ∈ C∞

D . (6.3)
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The structure theorem [Tre67, Theorem 45.1] applied to the topological tensor prod-
uct S ′(G)⊗̂S ′(G) immediately yields that the Schwartz kernel KA can be written in the
form

KA =
∞∑

n=1

s An x
A
n ⊗ t An , (6.4)

where
∑∞

n=1

∣∣s An
∣∣ < +∞ and {xn}, {tn} ⊂ S ′(G) tend to 0 in S ′(G). This allows us to

define global symbols σA in line with the classical theory.

Definition 6.11. Let A : C∞
D (G) → S ′(G) be a pseudo-differential operator. We define

a global symbol σA of A at π ∈ Ĝ as a matrix σA(π) = [σA(πi j )]nπ

i j of distributions
σA(πi j ) ∈ S ′(G) acting by the formula

C∞
D (G) � ϕ �→ σA(πi j )(ϕ) := KA(ϕ ⊗ πi j ) ∈ C. (6.5)

Alternatively, we have

σA(π)i j =
∞∑

n=1

s An x
A
n h(t An π∗

j i ) ∈ S ′(G). (6.6)

Definition 6.12. We say that a pseudo-differential operator A : C∞
D (G) → S ′(G) is

regular if KA ∈ C∞
D ⊗̂C∞

D .

It can be easily seen that this class of pseudo-differential operators is closed under
composition. Explicit composition formula for the global symbols on quatum tori T

n
θ

has been recently obtained in [LNJP16]. In Theorem 6.13 we derive the composition
formula in terms of abstract Schwartz kernels.

Theorem 6.13. Let A : C∞
D → C∞

D and B : C∞
D → C∞

D be two regular pseudo-
differential operators on G. Let KA and KB be the Schwartz kernels of A and B. Then
the composition A◦ B : C∞

D → C∞
D is a regular pseudo-differential operator. Moreover,

the Schwartz kernel KAB of the composition AB is given by

KAB =
∑

n

s An

(
∑

m

sBm x
A
n

(
x Bm
)
t Bm

)
⊗ t An , (6.7)

where KA =∑
n
s An x

A
n ⊗ t An and KB =∑

m
sBm x

B
m ⊗ t Bm .

Proof of Theorem 6.13. Our proof relies on the theory of topological vector spaces. We
notice that

B f =
∑

m

sBm x
B
m t

B
m ( f ), x Bm , f ∈ C∞

D .

By explicit calculations, we have

(AB f, g)L2(G) = (A(B f ), g)L2(G) =
∑

n

s An x
A
n (B f )t An (g)

=
∑

n

s An x
A
n

(
∑

m

sBm x
B
m t

B
m ( f )

)
t An (g)

=
∑

n

∑

m

sAn s
B
m x

A
n

(
x Bm
)
t Bm ( f )t An (g),

(6.8)



Smooth Dense Subalgebras and Fourier Multipliers 781

where in the second equality we used that
∑N

m sBm x
B
m t

B
m ( f ) ∈ C∞

D converges to
∑∞

m

sBm x
B
m t

B
m ( f ) ∈ C∞

D with respect to the topology in C∞
D . This shows (6.7).

Now, we show that KAB ∈ C∞
D ⊗̂C∞

D . Denoting

x AB
n =

∑

m

sBm x
A
n (x Bm )t Bm ,

t ABn = t An ,

s ABn = s An ,

we can write the Schwartz kernel KAB as follows

KAB =
∑

n

s ABn x AB
n ⊗ t ABn .

Since A is a regular pseudo-differential operator, we have

∑

n

∣∣∣s ABn

∣∣∣ < ∞

and t ABn ∈ C∞
D and t ABn → 0. Hence, it only remains to check that x AB

n ∈ C∞
D and

x AB
n → 0, i.e. for every α > 0

pα(x AB
n ) → 0, n → ∞. (6.9)

Since the sequence {sBm x A
n (x Bm )t Bm }∞m=1 ⊂ C∞

D is summable, we get

pα

( ∞∑

m=1

sBm x
A
n (x Bm )t Bm

)
≤

∞∑

m=1

∣∣∣sBm x A
n (x Bm )

∣∣∣ pα(t Bm ) ≤ C
∞∑

m=1

∣∣∣sBm
∣∣∣
∣∣∣x A

n (x Bm ).

∣∣∣ (6.10)

The injective topology onS ′(G) yields that x A
n tends to 0 uniformly over bounded subsets

of C∞
D , i.e.

lim
n

x A
n (x Bm ) = 0.

Thus, using this and passing to the limit in (6.10), we obtain (6.9). We refer to [Tre67,
Part III] for further details and definitions. ��

We introduce the right-convolution Schwartz kernel RA by the formula

RA :=
∞∑

n=0

s An x
A
n ⊗ uA

n ,

where uA
n is a convolution type vector-valued distribution acting by the formula

C∞
D � ϕ → uA

n (ϕ) = (1 ⊗ h)((1 ⊗ uA
n )(1 ⊗ S)�ϕ) ∈ C∞

D ,

and s An are as in (6.4).
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Theorem 6.14. Let (G,�) be a compact quantum group and let A : C∞
D → C∞

D be a
regular pseudo-differential operator acting via right-convolution kernel, i.e.

C∞
D (G) � f �→ A f =

∞∑

n=0

s An x
A
n u

A
n ( f ) ∈ C∞

D (G). (6.11)

Then we have
A f =

∑

π∈Ĝ
dπTr

(
σA(π) f̂ (π)π

)
, (6.12)

where σA(π) is the global symbol of A defined by (6.5).

Proof of Theorem 6.14. Let f ∈ C[G]. Then we have

f =
∑

π∈I f
dπ

nπ∑

i, j=1

f̂ (π)i jπ j i .

We shall start by showing that (6.12) holds true for f ∈ C[G]. We have

A f =
∞∑

n=0

s An x
A
n ⊗ uA

n ( f ) =
∞∑

n=0

s An x
A
n ⊗ (1 ⊗ h)(uA

n � f )

=
∞∑

n=0

s An x
A
n ⊗ (1 ⊗ h)((1 ⊗ uA

n ) ·
∑

π∈I f
dπ

nπ∑

i, j=1

f̂ (π)i j (1 ⊗ S)�π j i )

=
∑

π∈I f

nπ∑

i, j=1

nπ∑

k=1

∞∑

n=0

s An x
A
n ⊗ (1 ⊗ h)

[
dπ f̂ (π)i jπ jk ⊗ uA

n π∗
ki

]

=
∑

π∈I f
dπ

nπ∑

i, j=1

nπ∑

k=1

f̂ (π)i jπ jk ·
∞∑

n=0

s An x
A
n h(uA

n π∗
ki )

=
∑

π∈I f
dπ

nπ∑

i, j=1

nπ∑

k=1

uA
n f̂ (π)i jπ jk ·

∞∑

n=0

s An x
A
n h(uA

n π∗
ki )

=
∑

π∈I f
dπTr

[
f̂ (π)πσA(π)

]
.

Therefore, we get (6.12) where we can replace I f by Ĝ. ��

7. Differential Calculi on Compact Quantum Groups

In this section we are going to ask how the above ‘Fourier approach’ to the analysis
on compact quantum groups interplays with the theory of differential structures on
Hopf algebras of compact quantum groups and how this extends to C∞

D (G). Recall that
differential structures in the literature have been defined at the polynomial level i.e. on
C[G] as a Hopf ∗-algebra. For every choice of {λπ }

π∈Ĝ we have an operator defined by
Dπ = λππ and

C[G] ⊆ C∞
D (G) ⊆ G.
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Thus for G = SUq
2 we have C[G] = Cq [SU2] as the usual dense Hopf ∗-subalgebra of

SUq
2 with a 2 × 2 matrix of generators while C∞

D (SUq
2 ) lies in between as something

more akin to C∞(SU2). Our goal in the present section is to show that elements of
C∞
D (G) are indeed smooth with respect to a suitable differential structure at least for

SUq
2 and in outline for the general q-deformation case.
We start by recalling the purely algebraic definition of first-order differential calculus

over associative algebras and refer to [Maj16] for a thorough exposition. Let A be a unital
algebra over a field k.

Definition 7.1. A first order differential calculus (�1, d) over A means

(1) �1 is an A-bimodule.
(2) d : A → �1 is a linear map satisfying

d(ab) = (da)b + adb, ∀a, b ∈ A.

(3) The vector space �1 is spanned by elements of the form adb,

�1 = span{adb}a,b∈A.

In the ∗-algebra case, ∗ extends uniquely to �1 in such a way that it commutes with
d.

Example 7.2. Let A = C∞(R) and �1 = C∞(R).dx with left and right action given
by multiplication in C∞(R) (so functions and dx commute). The exterior derivative is
d f = ∂ f

∂x dx as this is the classical calculus.

There aremany other interesting calculi even on the commutative algebra of functions
in one variable, see [Maj16].

Definition 7.3. A differential calculus (�1, d) over a Hopf algebra A is called left-
covariant if

(1) There is a left coaction �L : �1 → A ⊗ �1.
(2) �1 with its given left action becomes a left Hopf module in the sense �L(aω) =

(�a).(�Lω) for all a ∈ A, ω ∈ �1.
(3) The exterior derivative d : A → �1 is a comodule map, where A coacts on itself

by the coproduct �

This case was first analysed in [Wor89] but here we continue with a modern
algebraic exposition. Note that the last two requirements imply that �L(adb) =
a(1)b(1) ⊗ a(2)db(2) using the Sweedler notation �a = a(1) ⊗ a(2), and conversely
if this formula gives a well-defined map then one can show that it makes the calculus
left covariant. Hence this is a property of (�1, d) not additional data. We have a similar
notion of right covariance and the calculus is called bicovariant if it is both left and right
covariant. Let �1 = {ω ∈ �1 | �Lω = 1⊗ ω} be the space of left-invariant 1-forms on
a left-covariant calculus.

In this case we define the Maurer-Cartan form � : A+ → �1 by

�(a) = Sa(1)da(2)

. This map is surjective by the spanning assumption above and is a right A-module map,
since

�(ab) = (Sb(1))(Sa(1))(da(2))b(2) + (Sb(1))ε(a)db(2) = �(a)�b,
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where �1 is a right module by ω�b = (Sb(1))ωb(2). Hence �1∼=A+/I for some right
ideal I ⊂ A+. Conversely, given a right A-module �1 and a surjective right-module
map � : A+ → �1 we can define a left covariant calculus by exterior derivative and
bimodule relations

da = a(1)�πεa(2), ωa = a(1)(ω�a(2)), ∀a ∈ A, ω ∈ �1.

Here πε(a) = a − ε(a) projects A → A+ and �1 = A.�1 is free as a left module.
If the calculus is bicovariant then �1 also has a right coaction making �1 an object in
the braided category MA

A of crossed A-modules (also called Radford-Drinfeld-Yetter
modules). Here A+ for any Hopf algebra is also a right crossed module by

a�b = ab, AdR(a) = a ⊗ (Sa(1))a(3)

(the right adjoint coaction) and � : A+ → �1 becomes a surjective morphism of right
crossed-modules in the bicovariant case.

Now let the calculus be bicovariant and �1 of finite dimension n as a vector space
(�1 finite-dimensional over A) and {ei }ni=1 a basis of �1 with { f i } a dual basis. Then
the associated ‘left-invariant vector fields’ (which are not necessarily derivations) are
given by

∂ i : A → A, ∂ i a = a(1) f
i (�πεa(2)), ∀a ∈ A

and obey �∂ i = (id⊗∂ i )� as in Definition 4.1 but on A and da = ∑
i (∂

i a)ei . The
global symbols σ i : A → k defined by σ i = 〈 f i ,�πε( )〉 can be recovered from
∂ i as σ i (a) = ε∂ i a and can typically be realised as evaluation against some element
xi of a dually paired ‘enveloping algebra’ Hopf algebra and in this context we will
write σ i = σxi = 〈xi , 〉. Similarly for each i, j let Ci

j (a) = a(1)〈 f j , ei�a(2)〉, for
a ∈ A, be left-invariant operators encoding the bimodule commutation relations. They
have no classical analogue (they would be the identity). Their symbols σi

m : A → k
defined by σi

j (a) = 〈 f j , ei�a〉 = εCi
j (a) can typically be given by evaluation against

elements yi j of a dually paired Hopf algebra and this in this context we will write
σi

j = σyi j = 〈yi j , 〉. It is these global symbols which we extract from the algebraic
structure of the calculus and need in what follows.

Now let (G,�) be a compact quantum group with dense ∗-Hopf subalgebra A =
C[G]. We suppose that we have a left covariant calculus on C[G] and remember from
it the key information �1 and the operators ∂ i ,Ci

j defining the exterior derivative and
bimodule relations respectively.

Proposition 7.4. Let (G,�) be a compact quantum group and let (�1, d) be a n-
dimensional left-covariant differential calculus over the dense Hopf ∗-algebra C[G]
of G. Then ∂ i ,Ci

j extend to left-coinvariant operators C∞
D (G) → C∞

D (G) and define
a differential calculus on the algebra C∞

D (G) if and only if there exists γ > 0 such that

max
i, j=1,...,n

{‖σ∂ i (π)‖2HS, ‖σC j
i
(π)‖2HS} ≤ |λπ |γ . (7.1)

The extension is given by �1(C∞
D (G)) = C∞

D (G) ⊗ �1 = C∞
D (G) ⊗C[G] �1 with

da =∑i (∂
i a)ei and ei .a =∑ j Ci

j (a)e j .
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Proof of Proposition 7.4. From the linearity of the exterior derivative d in the Fourier
expansion, we have

da =
∑

π∈Ĝ
dπTr ((Q

π )−1(dπ)̂a(π)), (7.2)

where from the results above including Theorem 4.3 in the algebraic form on C[G],

d(πi j ) =
n∑

k=1

∂k(πi j )ek,

∂kπi j =
∑

m

πimσ∂k (π)mj ,

σ∂k (π)mj = σ k(πmj ) = πmj (x
k),

and where the last step is the matrix of the representation of a dually paired Hopf algebra
defined by π when such xk exist.

Therefore, it is sufficient to check that ∂k : C∞
D → C∞

D are continuous linear maps
with respect to the topology defined by seminorms (6.2). By [Tre67, Proposition 7.7,
p.64], the linear maps ∂k act continuously in C∞

D (G) if and only if for every α > 0 there
is β > 0 such that

∑

π∈Ĝ
dπ |λπ |2α‖∂̂k(a)‖2HS ≤

∑

π∈Ĝ
dπ |λπ |2β ‖̂a‖2HS (7.3)

for every a ∈ C∞
D (G).

It is clear that condition (7.1) implies (7.3). Hence, we concentrate on necessity.
Taking a = πi j ∈ Ĝ in (7.3), we get

λ2απ ‖∂̂k(πi j )(π)‖2HS ≤ λ2βπ ‖π̂i j (π)‖2HS = λ2βπ . (7.4)

From (7.4) dividing by |λπ |2α , we get
‖∂̂k(πi j )(π)‖2HS ≤ |λπ |2(β−α). (7.5)

From the algebraic version of Theorem 4.3 we have

∂̂k(πi j )(π)mn =
nπ∑

s=1

σ∂k (π)ms π̂i j (π)sn = σ∂k (π)mj
qπ
i

dπ

δni ,

where we used

π̂i j (π)sn = qπ
i

dπ

δs jδni .

The latter follows from the Peter–Weyl orthogonality relations (2.3). Hence, we get

‖∂̂k(πi j )‖2HS =
nπ∑

m,n=1

1

qπ
m

∣∣∣∣σ∂k (π)mj
qπ
i

dπ

δni

∣∣∣∣
2

. (7.6)

Thus, estimate (7.4) reduces to

‖σ∂k (π)‖HS ≤ λβ−γ
π , π ∈ Ĝ,
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with γ = β − α.
We similarly need to extend the bimodule relations from C[G] to C∞

D (G) and we do
this in just the same way by

ei .a =
∑

π∈Ĝ
dπTr ((Q

π )−1(ei .π )̂a(π)),

where from the above and the algebraic form of Theorem 4.3 we have

ei .πkl =
∑

j

Ci
j (πkl)e j ,

Ci
j (πkl) =

∑

m

πkmσCi
j (πml),

σCi
j (πml) = σi

j (πml) = πml(yi
j ),

and where the last step is the matrix of the representation of a dually paired Hopf algebra
defined by π when such yi j exist. As before we need these linear maps Ci

j : C[G] →
C[G] to extend to C

∞
D which is another Hilbert–Schmidt condition on the symbols of

the same type as for the ∂ i . ��
Conversely, given a differential calculus (�1, d) over the Hopf-subalgebra C[G] of

G, we shall view (7.1) as a restriction on the {λπ } i.e. on a ‘Dirac operator’D : L2(G) →
L2(G) for it to agree with the differential calculus (�1, d) over C[G].
Definition 7.5. Let D : L2(G) → L2(G) be unbounded operator given by Dπmn =
λππmn for some collection {λπ }π∈Ĝ. We shall say that D is admissible with respect to
a differential calculus (�1, d) on C[G] if and only if the condition (7.1) on {λπ }π∈Ĝ
holds for some γ > 0.

Whether or not an admissibleD exists depends on the quantumgroup and the calculus.
We look at SUq

2 with its two main calculi of interest, the 3D and the 4D (both of these
calculi are from [Wor89] but the 4D one generalises to other q-deformation quantum
groups). As a first step, we will recall the computation of the global symbols for the
vector fields on the classical SU2. We first briefly recall representation theory of SUq

2

[MMN+91]. The unitary dual ̂SUq
2 is parametrised by the half-integers 1

2N0, i.e.

̂SUq
2 = {t l}l∈ 1

2N0
.

The Peter–Weyl theorem obtained in [MMN+91, Theorem 3.7] allows us to describe the
Fourier transform explicitly. For each a ∈ C[SUq

2 ], we define its matrix-valued Fourier
coefficient at t l by

â(l) = h(aStl), i.e. â(l)mn = h(aStlmn), (7.7)

where t l = (t lmn)m,n∈Il and Il = {−l,−l + 1, . . . ,+l − 1,+l}, l ∈ 1
2N0. It is convenient

for the inverse Fourier transform to introduce q-traces

τl(σ (l)) :=
∑

i∈Il
q2iσ(l)i i . (7.8)
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Moreover, the q-trace τl naturally leads to the q-hermitian inner form

(σ1(l), σ2(l)) := τl
(
σ1(l)σ2(l)

∗) .

The Fourier inversion formula takes [MMN+91, Theorem 3.10] the form

h(ab∗) =
∑

l∈ 1
2N0

[2l + 1]q
∑

i,k∈Il
q2i â(l)ik b̂(l)ik (7.9)

Let us denote by C∞(SU2) the space of infinitely differentiable functions on SU2. Let
X+ = (

0 0
1 0

)
, X− = (

0 1
0 0

)
, H = 1

2

(−1 0
0 +1

)
be a basis in the Lie algebra su2 of SU (2)

with [X+, X−] = H and associated first-order partial differential operators

∂+, ∂−, ∂+ : C∞(SU (2)) → C∞(SU (2))

(called creation, annihilation and neutral operators, respectively, in [RT13]). Then clas-
sically, in our current conventions, one has the following.

Proposition 7.6 ([RT13, Theorem 5.7, p.2461]).

∂+t
l
mn = √(l − n)(l + n + 1)t lm n+1,

∂−t lmn = √(l + n)(l − n + 1)t lm n−1,

∂0t
l
mn = ntlmn .

From this the classical global symbols σ∂± , σ∂0 can be read off as the matrix entries of
X±, H in the representation t l . The corepresentation theory of SUq

2 is strikingly similar
to its classical counterpart giving similar results. We compute the symbols for the action

of X−, X+, q
H
2 as elements of the quantum enveloping algebra Uq(su2) acting by the

regular representation on Cq [SU2] and in the conventions of [Maj95].

Lemma 7.7. We have

σX+(t
l)mn = √[l − n]q [l + n + 1]qδm n+1,

σX−(t l)mn = √[l + n]q [l − n + 1]qδm n−1,

σ
q

H
2
(t l)mn = qnδm n

where [n]q = qn−q−n

q−q−1 .

Proof of Lemma 7.7. Let q be real and for each l ∈ 1
2N0, the quantum group Uq(su2)

has 2l + 1-dimensional unitary representation space Vl = {|l m〉}+lm=−l detailed in the
relevant conventions in [Maj95, Proposition 3.2.6, p.92] so that, for example, X+|l,m〉 =√[l − n]q [l + n + 1]q |l,m + 1〉. By definition, the t lmn are the matrix elements of this
representation, immediately giving σX (t l)mn = 〈X, t lmn〉 = t l(X)mn for the symbol of
any left-invariant operator X̃(a) = a(1)〈X, a(2)〉. Thus we can read off the σX± , σ

q
H
2
as

stated. ��
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For the convenience of the reader we recall that the Q-matrix for G = SUq
2 is given

[MMN+91] by

Ql = diag(q−2i )li=−l , l ∈ 1

2
N0. (7.10)

As a warm-up we look at the admissibility condition (7.1) of Proposition 7.4.

Lemma 7.8. Let bq = max(q, 1
q ). Then

[n]q ∼= bnq .

We write x ∼= y if there are constants c1, c2 �= 0 such that

c1x ≤ y ≤ c2x .

Lemma 7.9. Let G = SUq
2 . Then we have

‖σX+(t
l)‖HS � [2l + 1]q ,

‖σX−(t l)‖HS � [2l + 1]q ,
‖σ

q
H
2
(t l)‖HS � [2l + 1]q .

Proof of Lemma 7.9. By (2.8)

‖σX+(t
l)‖2HS :=

+l∑

m=−l

q2m
+l∑

n=−l

∣∣∣σX+(t
l)mn

∣∣∣
2 =

+l∑

m=−l

q2m[l − m + 1]q [l + m]q

∼=
+l∑

m=−l

q2mbl−m+1
q bl+mq = b2l+1q

+l∑

m=−l

q2m = b4lq ,

(7.11)

where we used the fact that
+l∑

m=−l

qm ∼= blq . (7.12)

Similarly, we get

‖σX−(t l)‖2HS =
+m∑

m=−l

q2m[l + m + 1]q [l − m]q ∼=
+m∑

m=−l

q2mbl+m+1
q bl−m

q = b2l+1q b2lq

∼= b4lq ∼= [2l + 1]2q .
(7.13)

Finally, we compute

‖σ
q

H
2
(t l)‖2HS =

+l∑

m=−l

q2mq2m ∼= b4lq ∼= [2l + 1]2q . (7.14)

This completes the proof. ��
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By the arguments as in the proof of Proposition 7.4 it follows that the associated left

covariant operators to X± and q
H
2 − 1 extend to C∞

D (SUq
2 ) where

Dt li j = ±[2l + 1]q tli j (7.15)

since the || ||2HS condition similar to (7.1) holds, but for the symbols of these operators
rather than for a choice of calculus.

7.1. 3D calculus on SUq
2 . We are now ready for the left-covariant 3D calculus on

Cq [SU2] which we take with the defining 2-dimensional representation with tαβ =
{a, b, c, d} to give the standard matrix of generators with usual conventions where
ba = qab etc. We let | | denote the known Z-grading on the algebra defined as the
number of a, c minus the number of b, d in any monomial. The 3D calculus has gener-
ators e0, e± with commutation relations

e0 f = q2| f | f e0, e± f = q | f | f e±
(which implies the action in the vector space�1 with basis e0, e±). The exterior derivative
is

da = ae0 + qbe+, db = ae− − q−2be0, dc = ce0 + qde+, dd = ce− − q−2de0

Next the combinations σ k = f k◦�πε = ε∂k are linear functionals on A = Cq [SU2]
and can in fact be identified as evaluation against elements xk ∈ Uq(su2) in our case.

Proposition 7.10. The 3D calculus (�1
3D, Cq [SU2], d) over Cq [SU2] is generated by

the action of

x+ = q
1
2 X−q

H
2 , x− = q− 1

2 X+q
H
2 , x0 = q2H − 1

q2 − 1

and extends to C∞
D (SUq

2 ) where D defined in (7.15) is admissible with γ = 2. The
symbols are given by

σx+(t
l)mn = qn+

1
2
√[l + m + 1]q [l − m]qδm n+1(1 − δm 2l+1),

σx−(t l)mn = qn− 1
2
√[l − m + 1]q [l + m]qδm n(1 − δm 1)mn,

σx0(t
l)mn = h(t lmn) − q4nδm n

1 − q2
.

Proof of Proposition 7.10. The 3D calculus is constructed ‘by hand’ so we use the form
σ k = ε∂k and the known form of the partial derivatives (obtained by computing d on
monomials via the Leibniz rule) and find elements xk ∈ Uq(su2) as stated that give
these. One then finds the symbols σxk (π)i j = π(xi )i j as

σx+(t
l)mn = q

1
2 [σX−(t l)σ

q
H
2
(t l)]mn = q

1
2

2l+1∑

k=1

σX−(t l)mkσ
q

H
2
(t l)kn

=
2l+1∑

k=1

√[l + k]q [l − k + 1]qδm k−1q
nδk n

= qn+
1
2
√[l + m + 1]q [l − m]qδm n+1(1 − δm 2l+1),
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where we used the fact that σX (π)σY (π) = σXY (π) since these are matrices for
X,Y, XY in the representation π , and Lemma 7.7. Similarly, we establish

σx−(t l)mn = qn− 1
2
√[l − m + 1]q [l + m]qδm n(1 − δm 1)mn,

σx0(t
l)mn = h(t lmn) − q4nδm n

1 − q2
.

where for the haar function h we estimate
∣∣∣h(t lmn)

∣∣∣ ≤ ‖t lmn‖oph(1) ≤ h(1). (7.16)

It is then straightforward to check that the condition (7.1) is satisfied for the symbols
σx±(t l), σx0(t

l). Hence, the application of Proposition 7.4 shows that the vector fields
x±, x0 are continuous.

Now, we check condition (7.1) allowing us to extend x+, x−, x0 continuously. We
have

‖σx+(t l)‖2HS =
+l∑

m,n=−l

q2n+1[l + m + 1]q [l − m]q ∼=
+l∑

m,n=−l

q2n+1bl+m+1
q bl−m

q

= b2l+1q

+l∑

m,n=−l

q2n+1 ∼= b2l+1q b2l ∼= b4lq .

(7.17)

Similarly

‖σx−(t l)‖2HS =
+l∑

m,n=−l

q2n−1[l − m + 1]q [l + m]q ∼= b4lq .

We similarly have commutation relations given for i, j = ± by

σi
j (t l)mn = δi j t

l(yi )mn = δi jδmn

{
q−2m i = ±
q−4m i = 0

; y± = q−H , y0 = q−2H

if we number the indices by −l, . . . , l for the 2l + 1 dimensional representation t l . This
gives commutation relations ei tljk = t ljmσi

p(t l)mkep = t ljmeiδmkq−2k = t ljkq
−2kei for

i = ± (and q2 in place of q if i = 0) which corresponds to a Z-grading of Cq [SU2]
where t ljk has grade −2k. For the spin 1/2 representation it means a, c in the standard
matrix generators tmn of the quantum group have grade 1 and b, d have grade -1 as
expected. We compute ‖σi j (t l)‖2HS similarly as in the proof of Lemma 7.9. By (7.21)

‖σi j (t l)‖2HS :=
+l∑

n=−l

q2n
+l∑

m=−l

∣∣∣q−2nδmnδi j

∣∣∣
2

= δi j

+l∑

n=−l

= (2l + 1) ≤ b2l+1q
∼= [2l + 1]q .

(7.18)

��
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7.2. 4D calculus on SUq
2 . As before we denote the standard 2× 2 matrix of generators

of Cq [SU2] by a, b, c, d. This time (from the general construction given later or from
[Wor89]) there is a basis ea, eb, ec, ed corresponding to the generators, with relations
and exterior derivative

ea

(
a b
c d

)
=
(
qa q−1b
qc q−1d

)
ea

[eb,
(
a b
c d

)
] = qλ

(
0 a
0 c

)
ea, [ec,

(
a b
c d

)
] = qλ

(
b 0
d 0

)
ea

[ed ,
(
a
c

)
]q−1 = λ

(
b
d

)
eb, [ed ,

(
b
d

)
]q = λ

(
a
c

)
ec + qλ2

(
b
d

)
ea,

d

(
a
c

)
=
(
a
c

)
((q − 1)ea + (q−1 − 1)ed) + λ

(
b
d

)
eb

d

(
b
d

)
=
(
b
d

)
((q−1 − 1 + qλ2)ea + (q − 1)ed) + λ

(
a
c

)
ec.

Here [x, y]q ≡ xy − qyx and λ = 1 − q−2.
Then the generators of the calculus are elements xk ∈ Uq(su2) where k = a, b, c, d

which we organise as a 2 × 2 matrix of elements (xαβ) where

(xαβ) =
(
qH + qλ2X−X+ − 1 q

1
2 λX−q− H

2

q
1
2 λq− H

2 X+ q−H − 1

)
(7.19)

These combinations xαβ are known to span the right handed braided-Lie algebra L ⊂
Uq(su2) and generate the quantum group [Maj15].

Proposition 7.11. The 4D calculus (�1
4D, Cq [SU2], d) extends to C∞

D (SUq
2 ) for the

same D in (7.15), which is again admissible with γ = 2.

Proof of Proposition 7.11. We compute the symbol σxαβ (π) of xαβ composing the
results in Lemma 7.7 to find

σ(xαβ)(t
l
mn)

=
(

(q2l + q−2l−2 − q−2n−2 − 1)δmn q−n+ 1
2 λ
√[l + n]q [l − n + 1]qδm n−1

q−n− 1
2 λ
√[l − n]q [l + n + 1]qδm n+1 (q−2n − 1)δmn

)

(7.20)

It is sufficient to check that xαβ acts continuously in each L2(G). Let us denote

σ(xαβ)(t
l) =

(
σ a(t l) σ b(t l)
σ c(t l) σ d(t l)

)
.

By (2.8)

‖σ(t l)‖2HS =
+l∑

m=−l

q2m
+l∑

n=−l

∣∣∣σ(t l)mn

∣∣∣
2
. (7.21)
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Composing (7.21) and (7.20), we get

‖σ a(t l)‖2HS =
+l∑

m=−l

q2m
+l∑

n=−l

∣∣∣σ a(t l)mn

∣∣∣
2

=
+l∑

m=−l

q2m
(
q2l + q−2l−2 − q−2m−2 − 1

)2

=
+l∑

m=−l

(q2l + q−2l−2)2

−
+l∑

m=−l

2(q2l + q−2l−2)(q2m−2 − 1) + (q−2m−2 − 1)2

=
+l∑

m=−l

q4l + 2q2l−2l−2 + q−4l−4

−
+l∑

m=−l

2(q2l−2m−2 − q2l + q−2l−2m−4 − q−2l−2)

+
+l∑

m=−l

q−4m−4 − 2q−2m−2 + 1

= (q4l + 2q−2 + q4l−4 + 2q2l + 2q−2l−2 + 1)(2l + 1)

+ (−2q2l−2 − 2q−2l−4 − 2q−2)

+l∑

m=−l

q−2m + q−4
+l∑

m=−l

q−4m .

The expression −2q2l−2 − 2q−2l−4 − 2q−2 is always negative. Therefore,
we get

‖σ a(t l)‖2HS ≤
(
q4l + 2q−2 + q−4l−4 + 2q2l + 2q−2l−2 + 1

)
(2l + 1)

+ q−4
+l∑

m=−l

q−4m . (7.22)

It is straightforward to check that

q4l + 2q−2 + q−4l−4 + 2q2l + 2q−2l−2 + 1 ∼= b4lq (7.23)

and
+l∑

m=−l

q−4m =
+l∑

m=−l

q4m ∼= b4lq . (7.24)

Using (7.23) and (7.24), we get from (7.22)

‖σ a(t l)‖2HS � b4lq (2l + 1) � b5lq ∼=
(
b2l+1q

) 5
2 ∼= [2l + 1]

5
2
q , (7.25)
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where in the first inequality we used the fact

(2l + 1) � blq .

In the second inequality we used Lemma 7.8 with n = 2l + 1. Now, we compute
‖σ b(t l)‖2HS

‖σ b(t l)‖2HS =
+l∑

m=−l

q2m
+l∑

n=−l

∣∣∣q−n+ 1
2 λ
√[l + n]q [l − n + 1]qδm,n−1

∣∣∣
2

=
+l∑

m=−l

q2mq−2mq−1λ2[l + m + 1]q [l − m]q ∼=
+l∑

m=−l

[l + m + 1]q [l − m]q

∼=
+l∑

m=−l

bl+m+1
q bl−m

q =
+l∑

m=−l

b2lq = (2l + 1)b2lq � b4lq ∼= [2l + 1]2q .
(7.26)

We can argue analogously for ‖σ c(t l)‖HS to get

‖σ b(t l)‖2HS � [2l + 1]2q . (7.27)

Finally, one checks by direct calculation that

‖σ d(t l)‖2HS =
+l∑

m=−l

q2m
∣∣∣(q−2n − 1)δmn

∣∣∣
2 =

+l∑

m=−l

q2m
(
q−4m − 2q−2m + 1

)

=
+l∑

m=−l

q−2m − 2(2l + 1) +
+l∑

m=−l

q2m ≤ 2
+l∑

m=−l

q2m ∼= b2lq ∼= [2l + 1]q .
(7.28)

Now, we check that the matrices σαβ
γ δ encoding the bimodule commutation relations in

the 4D calculus satisfy condition (7.1) with some exponent γ . The bimodule relations
are best handled as part of a general construction discussed later and from (7.30) and
(7.31) there, we see the seven values

σ j1
i2(t l)mn = σ(Sl−i

j )l+12(t
l)mn = 0, σ1i

2 j (t l)mn = σ(Sl−2
1)l+i j (t

l)mn = 0

since l+12 = l−2
1 = 0. The non-zero matrices σαβ

γ δ are obtained by reading (7.31) and

plugging it into (7.30), noting that SX− = −q−1X− Sq
H
2 = q− H

2 for the action of the
antipode. We then compute the symbols by composing the symbols for the composition
of invariant operators, to obtain

σ11
11(t l)mn = σ(Sl−1

1)l+11(t
l)mn = σ

q
H
2 q

H
2
(t l)mn = q2nδmn,

σ12
11(t l)mn = σ(Sl−1

1)l+21(t
l)mn = σ

q
H
2 q− 1

2 (q−q−1)X+
(t l)mn

= q− 1
2 (q − q−1)qm

√[l − m]q [l + m + 1]qδm,n+1,

σ12
12(t l)mn = σ(Sl−1

1)l+22(t
l)mn = σ

q
H
2 ·q− H

2
(t l)mn = δmn,
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σ21
11(t l)mn = σ(Sl−1

2)l+11(t
l)mn = σ

q− 1
2 (q−q−1)X−·q H

2
(t l)mn

= q− 1
2 (q − q−1)

√[l + n]q [l − n + 1]qqnδm,n−1,

σ22
11(t l)mn = σ(Sl−1

2)l+21(t
l)mn = σ

q− 1
2 (q−q−1)X−·q− 1

2 (q−q−1)X+
(t l)mn

= q−1(q − q−1)2
√[l + m]q [l − m + 1]q

√[l − n]q [l + n + 1]qδmn,

σ22
12(t l)mn = σ(Sl−1

2)l+22(t
l)mn = σ

q− 1
2 (q−q−1)X−·q− H

2
(t l)mn

= q− 1
2 (q − q−1)

√[l + n]q [l − n + 1]qq−nδm,n−1

σ21
21(t l)mn = σ(Sl−2

2)l+11(t
l)mn = σ

q− H
2 ·q H

2
(t l)mn = δmn,

σ22
21(t l)mn = σ(Sl−2

2)l+21(t
l)mn = σ

q− H
2 ·q− 1

2 (q−q−1)X+
(t l)mn

= q− 1
2 (q − q−1)q−m

√[l − n]q [l + n + 1]qδm,n+1,

σ22
22(t l)mn = σ(Sl−2

2)l+22(t
l)mn = σ

q− H
2 q− H

2
(t l)mn = q−2nδmn .

Now we can compute the corresponding q-deformed Hilbert–Schmidt norms,

‖σ1111(t l)‖2HS =
+l∑

−l

q6m ∼= b6lq ∼= [2l + 1]3q ,

‖σ1211(t l)‖2HS ∼=
+l∑

m=−l

q2mq2m[l − m]q [l + m + 1]q ∼=
+l∑

m=−l

q4mbl−m
q bl+m+1

q

∼= b4lq b
2l+1
q

∼= [2l + 1]3q ,

‖σ1212(t l)‖2HS = ‖σ2121(t l)‖2HS ∼=
+l∑

m=−l

q2m ∼= b2lq ∼= [2l + 1]q ,

‖σ2111(t l)‖2HS ∼=
+l∑

m=−l

q2mq2m[l + m + 1]q [l − m]q ∼= b2l+1q

+l∑

m=−l

q4m

∼= b2l+1q b4lq ∼= [2l + 1]3q ,

‖σ2211(t l)‖2HS ∼=
+l∑

m=−l

q2m[l + m]q [l − m + 1]q [l − m]q [l + m + 1]q

∼=
+l∑

m=−l

q2mbl+mq bl−m+1
q bl−m

q bl+m+1
q = b2(2l+1)q b2lq � b3(2l+1)q

∼= [2l + 1]3q ,

‖σ2212(t l)‖2HS ∼=
+l∑

m=−l

q2mq−2m[l + m + 1]q [l − m]q ∼=
+l∑

m=−l

bl+m+1
q bl−m

q

= (2l + 1)b2l+1q � [2l + 1]2q ,
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‖σ2221(t l)‖2HS ∼=
+l∑

m=−l

q2mq−2m[l − m + 1]q [l + m]q ∼=
+l∑

m=−l

bl−m+1
q bl+mq

= (2l + 1)b2l+1 � [2l + 1]2q ,

‖σ2222(t l)‖2HS =
+l∑

m=−l

q2mq−4m =
+l∑

m=−l

q−2m =
+l∑

m=−l

q2m ∼= b2lq

∼= [2l + 1]q .
The application of Proposition 7.4 completes the proof that d extends. ��

7.3. Generalising to other coquasitriangular Hopf algebras. The bicovariant 4D calcu-
lus on A = Cq [SU2] is an example of a canonical construction whenever A is coquasi-
triangular in the dual of the sense of V.G. Drinfeld, i.e. a mapR : A ⊗ A → C obeying
certain axioms. This gives a bicovariant calculus for any L ⊂ A a subcoalgebra [Maj15].
We define

Q : A+ ⊗ L → C, Q(a ⊗ b) = R(b(1) ⊗ a(1))R(a(2) ⊗ b(2))

which we view as � = Q : A+ → �1 = L∗. If this is not surjective we take �1 to be
the image, but in examples it tends to be surjective so we suppose this as a property of
the data (A,R, L). In addition L is canonically a left crossed A-module [Maj15] which
makes �1 a right crossed A-module with � a morphism. Here the left action on L is

a�b = b(2)R(b(1) ⊗ a(1))R(a(2) ⊗ b(3)), ∀a ∈ A, b ∈ L .

The simplest case of interest is when L is the span of the matrix elements of a
corepresentation t ∈ Â, L = span{tαβ}. We let {eαβ} be the dual basis of �1, so
f αβ = tαβ is the dual basis element to eαβ . We let eα be a basis of the corepresentation
V so�Reα = eβ ⊗ tβα . The associated left representation of any Hopf algebraU dually
paired to A is t (x)αβ = 〈tαβ, x〉 for all x ∈ U or x .eα = eβ〈tβα, x〉. In this case if πi j

are the matrix elements of a representation π ∈ Â then

σαβ(π)i j = f αβ(�(πi j − δi j )) = Q(πi j ⊗ tαβ) − δi jδ
α

β (7.29)

which we can usually write as

σαβ(π)i j = π(xαβ)i j , Q(a ⊗ tαβ) = ε(a)δα
β + 〈a, xαβ〉, ∀a ∈ A,

for some elements xαβ ∈ U for suitable U . Here xαβ = ((Sl−)l+)αβ − δα
β in the

quantum groups literature [Maj95] for certain elements l±α
β ∈ U . These elements are

evaluated in the associated matrix representation π of U and ε(xα
β) = 0 is implied by

the above. Similarly, the adjoint of the action on L gives the right action

eαβ�a = eγ δR(tγ α ⊗ a(1))R(a(2) ⊗ tβδ) = eγ δ〈a, Sl−γ
αl

+β
δ〉.

Hence the action of matrix elements πi j of a corepresentation is

eαβ�πi j = eγ δπ((Sl−γ
α)l+β

δ)i j ,
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or in terms of the matrix that governs the commutation relations, this is

σαβ
γ δ(π)i j = π((Sl−γ

α)l+β
δ)i j . (7.30)

For the example of Uq(su2) one has [Maj95]

l+ =
(

q
H
2 0

q− 1
2 (q − q−1)X+ q− H

2

)
, l− =

(
q− H

2 q
1
2 (q−1 − q)X−

0 q
H
2

)
, (7.31)

giving the formulae for xα
β previously used. It seems clear that this calculus will sim-

ilarly extend to C∞
D (G) for the general q-deformation of a compact simple group with

A = C[G] coquaistriangular. Details will be considered elsewhere.

8. Concluding Remarks

Having a suitable summableD to define a smooth subspaceC∞
D to which the differential

calculus extends, as above, is an important step towards an actual geometric Dirac
operator. In the coquasitriangular case with the bicovariant calculus defined by a matrix
corepresentation, we have �1 = End(V ) for some comodule V and following [Maj03]
we can define ‘spinor sections’ S∞

D = C∞
D ⊗ V and a canonical map

D : S∞
D → S∞

D , D(sβ ⊗ eβ) = ∂αβsβ ⊗ eα

where {eα} is a basis of V and sα ∈ C∞
D . At the algebraic level this was

D = (id⊗ev)(d ⊗ id) : A ⊗ V → A ⊗ End(V ) ⊗ V → A ⊗ V

in [Maj03], but since the partial derivatives extend to ‘smooth functions’ we see that so
does D to our ‘smooth sections’. This was studied at the algebraic level in detail for
A = Cq [SU2] and justified as a natural Dirac-like operator that bypasses the Clifford
algebra in the usual construction of the geometric Dirac operator, and fits with that after
we add an additional constant curvature term (a multiple of the identity). Using our
results for this quantum group we have

D

(
αt lmn
βt l

′
pr

)
=
(

αt lmsσ
11(t lsn) + βt l

′
psσ

12(t l
′
sr )

αt lmsσ
21(t lsn) + βt l

′
psσ

22(t l
′
sr )

)

for coefficients α, β and for the symbols (7.20) given previously (we sum over s in
the appropriate range). The eigenvalues of the geometrically normalised D/λ when
restricted to both spinor components in the Peter–Weyl subspace spanned by {t lmn} are

(i) ql+1[l]q; (i i)(l > 0) − q−l [l + 1]q
and fully diagonalise this subspace of dimension 2(2l+1)2, and hence together fully diag-
onalise D. The type (i) eigenvalues were already noted for the reduced Hopf algebras at
odd roots unity in [Maj03, Prop. 5.2] in the equivalent form q2[2l; q]/[2; q] = q2[l; q2],
where [m; q] = (qm−1)/(q−1) = 1+q+· · ·+qm−1.We see using our Fourier methods
that we also have a second set (ii) both at roots of unity (beyond the 3rd root) and for
real or generic q. Note that our above geometric D is not directly comparable to our
operators D because our spinor space is two-dimensional so that D does not act on one
copy of the coordinate algebra, and nor should it geometrically, but is in the same ball
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park as the q-deformation (7.15) of the classical D with eigenvalues 2l + 1 discussed in
Example 5.6.

Also note that the bicovariant matrix block calculi are typically inner in the sense of a
nonclassical direction θ such that [θ, f ] = λd f , and that is the case for the 4D calculus
on Cq [SU2] with θ = ea + ed . One can choose a more geometric basis ez, eb, ec, θ
where the first three have a classical limit as usual and ez = q−2ea − ed . The partial
derivative ∂θ for the θ -direction in this basis turns out to be the q-deformed Laplacian
�q as explained in [Maj15]. There is a quantum metric

g = ec ⊗ eb + q2eb ⊗ ec +
q2

q + q−1 (ez ⊗ ez − θ ⊗ θ)

and denoting its coefficients as gi j one has a natural q-Laplace operator [Maj15]

�q = q

2
gi j∂

i∂ j , ∂θ = q∂a + q−1∂d

q + q−1 = q2λ2

q + q−1�q

(where we have changed to our more geometric normalisation of ∂ i and d). Once again,
since we have seen that the partial derivatives extend to C∞

D (SUq
2 ), this �q also extends

and, using our result (7.20), we are in a position to compute it in our Peter–Weyl basis
as

�q t
l
mn = [2]q

q2λ2
∂θ t lmn = q−2λ−2(qtlmsσ

11(t l sn) + q−1t lmsσ
22(t l sn))

= q(q2l − 1) + q−1(q−2l − 1)

(q − q−1)2
t lmn

= [l]q [l + 1]q tlmn

for m, n = −l, . . . , l. One could then take a square root involving �q much as in
Example 5.5 for the operator D to provide the smoothness.

Further q-harmonic analysis using our Fourier methods will be considered elsewhere
to include smooth functions and harmonic analysis on the q-sphere obtained from the
3D differential calculus on C∞

D (SUq
2 ), extending the algebraic line for the geometric

Dirac operator on the q-sphere in [BM15]. Note that our q-geometric Dirac operators
are not exactly parts of spectral triples in the strict Connes sense, although the one on the
q-sphere comes close at the algebraic level. The bounded commutator issue was already
noted at the end of Sect. 5 for the q-deformedD in (7.15). In [KS12] it is shown for SUq

2
that an operator with similar eigenvalues to the above D has bounded ‘commutator’
provided the latter is twisted by the left modular automorphism. Investigation of the
precise relationship between algebro-geometric triples, such as in [Maj03,BM15], and
twisted spectral triples [Con08], should be an interesting topic for further work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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