Aharonov Y., Albert D.Z., Vaidman L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)
ADS
Article
Google Scholar
Acz̀el J., Daròczy Z.: On Measures of Information and their Characterizations. Academic Press, New York (1975)
Google Scholar
Aharonov Y., Bergmann P.G., Lebowitz J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964)
ADS
MathSciNet
Article
MATH
Google Scholar
Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review. In: Muga G., Sala Mayato R., Egusquiza I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol 1, 734, pp. 399–447, 2nd ed. Springer, Berlin (2008)
Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. World Scientific, River Edge, NJ (2000)
Barreira L.: Almost additive thermodynamic formalism: some recent developments. Rev. Math. Phys. 22, 1147–1179 (2010)
MathSciNet
Article
MATH
Google Scholar
Barsheshat, Y.: Masters thesis, McGill, (2015)
Batalhão T.B., Souza A.M., Sarthour R.S., Oliveira I.S., Paternostro M., Lutz E., Serra R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)
ADS
Article
Google Scholar
Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)
ADS
Article
Google Scholar
Bauer M., Benoist T., Bernard D.: Repeated quantum non-demolition measurements: convergence and continuous-time limit. Ann. Henri Poincaré 14, 639–679 (2013)
ADS
MathSciNet
Article
MATH
Google Scholar
Ballesteros M., Fraas M., Fröhlich J., Schubnel B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162, 924–958 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Blanchard P., Fröhlich J., Schubnel B.: A “Garden of Forking Paths”—the quantum mechanics of histories of events. Nucl. Phys. B. 912, 463–484 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Barchielli A., Gregoratti M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, vol 782 Lecture Notes in Physics. Springer, Berlin (2009)
Book
MATH
Google Scholar
Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples. (in preparation)
Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the nature of the quantum detailed balance condition. (in preparation)
Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the Rényi entropy of repeated quantum measurements. (in preparation)
Bohm D.: Quantum Theory. Prentice Hall, New York (1951)
Google Scholar
Bomfim T., Varandas P.: Multifractal analysis of the irregular set for almost-additive sequences via large deviations. Nonlinearity 28, 3563–3585 (2015)
ADS
MathSciNet
Article
MATH
Google Scholar
Bowen R.: Some systems with unique equilibrium state. Math. Syst. Theory 8, 193–202 (1974)
MathSciNet
Article
MATH
Google Scholar
Bowen R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol 470. Lecture Notes in Mathematics. Springer, Berlin (1975)
Book
Google Scholar
Carmichael H.: An Open Systems Approach to Quantum Optics, vol 18. Lecture Notes in Physics Monographs M. Springer, Berlin (1993)
Google Scholar
Campisi M., Hänggi P., Talkner P.: Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011)
ADS
Article
MATH
Google Scholar
Cao Y.-L., Feng D.-J., Huang W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)
MathSciNet
MATH
Google Scholar
Crooks G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)
ADS
Article
Google Scholar
Crooks G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)
ADS
Article
Google Scholar
Chen Y., Zhao Y., Cheng W.-C.: Sub-additive pressure on a Borel set. Acta Math. Scient. 35, 1203–1213 (2015)
MathSciNet
Article
MATH
Google Scholar
Davies E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)
MATH
Google Scholar
den Hollander F.: Large Deviations. Fields Institute Monographs, AMS, Providence (2000)
MATH
Google Scholar
Derriennic Y.: Un théorème ergodique presque sous-additif. Ann. Proba. 11, 669–677 (1983)
Article
MATH
Google Scholar
Deffner S., Lutz E.: Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)
ADS
Article
Google Scholar
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Second edition. Applications of Mathematics 38. Springer, New York 1998
Dobrushin, R.L.: A Gibbsian representation for non-Gibbsian fields. Lecture given at the workshop Probability and Physics, September 1995, Renkum, Netherlands
Dobrushin R.L., Shlosman S.B.: Non-Gibbsian states and their Gibbs description. Comm. Math. Phys. 200, 125–179 (1999)
ADS
MathSciNet
Article
MATH
Google Scholar
Evans D.J., Cohen E.G.D., Morriss G.P.: Probability of second law violation in shearing steady flows. Phys. Rev. Lett. 71, 2401–2404 (1993)
ADS
Article
MATH
Google Scholar
Eddington A.S.: The Nature of the Physical World. McMillan, London (1928)
MATH
Google Scholar
Evans D.E., Høegh-Krohn R.: Spectral properties of positive maps on C
*-algebras. J. Lond. Math. Soc. 17, 345–355 (1978)
MathSciNet
Article
MATH
Google Scholar
Esposito M., Harbola U., Mukamel S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)
ADS
MathSciNet
Article
MATH
Google Scholar
Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin, 1985. Reprinted in the series Classics of Mathematics (2006)
Evans D.J., Searles D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)
ADS
Article
Google Scholar
Falconer K.J.: Sub-self-similar set. Transactions AMS 347, 3121–3129 (1995)
MathSciNet
Article
MATH
Google Scholar
Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)
ADS
MathSciNet
Article
MATH
Google Scholar
Feng D.-J.: The variational principle for products of non-negative matrices. Nonlinearity 17, 447–457 (2004)
ADS
MathSciNet
Article
MATH
Google Scholar
Feng D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part I: positive matrices. Isr. J. Math. 138, 353–376 (2003)
Article
MATH
Google Scholar
Feng D.-J.: Lyapounov exponents for products of matrices and multifractal analysis. Part II: general matrices. Isr. J. Math. 170, 355–394 (2009)
Article
MATH
Google Scholar
Feng D.-J., Lau K.-S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378 (2002)
MathSciNet
Article
MATH
Google Scholar
Feng D.-J., Känemäki A.: Equilibrium states for the pressure function for products of matrices. Discrete Contin. Dyn. Syst. 30, 699–708 (2011)
MathSciNet
Article
Google Scholar
Fernandez, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier A., Dalibard J., Dunlop F., van Enter A., den Hollander F. (eds.) Mathematical Statistical Physics, Elsevier (2006)
Falconer, K.J., Sloan, A.: Continuity of subadditive pressure for self-affine sets. Real Anal. Exch. 34, 1–16, (2008/2009)
Gallavotti G., Cohen E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)
ADS
Article
Google Scholar
Gallavotti G., Cohen E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)
ADS
MathSciNet
Article
MATH
Google Scholar
Grigolini P., Pala G.M., Palatella L.: Quantum measurement and entropy production. Phys. Lett. A 285, 49–54 (2001)
ADS
MathSciNet
Article
MATH
Google Scholar
Heisenberg W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)
ADS
Article
MATH
Google Scholar
Holevo A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics Monographs, M 67. Springer, Berlin (2001)
Google Scholar
Halliwel JJ, Pérez-Mercader J, Zurek WH (eds) (1996) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge
Iommi G., Yayama Y.: Almost-additive thermodynamic formalism for countable Markov shifts. Nonlinearity 25, 165–191 (2012)
ADS
MathSciNet
Article
MATH
Google Scholar
Jakšić V (2015) Lectures on Entropy. Preprint, McGill
Jakšić, V., Nersesyan, V., Pillet, C.-A., Porta, M., and Shirikyan, A.: (In preparation)
Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Roeck, W. de , Mastropietro, V., Cugliandolo, L.F. Quantum Theory from Small to Large Scales., pp. Oxford University Press, Oxford (2012)
Jakšić V., Ogata Y., Pillet C.-A., Seiringer R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)
MathSciNet
Article
MATH
Google Scholar
Jakšić V., Pillet C.-A., Rey-Bellet L.: Entropic fluctuations in statistical mechanics I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)
ADS
MathSciNet
Article
MATH
Google Scholar
Jakšić, V., Pillet, C.-A., Shirikyan, A.: Entropic fluctuations in thermally driven harmonic networks. J. Stat. Phys. (2016) doi:10.1007/s10955-016-1625-6
Jakšić V., Pillet C.-A., Westrich M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154, 153–187 (2014)
MathSciNet
Article
MATH
Google Scholar
Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)
ADS
Article
Google Scholar
Kümmerer, B., and Maassen, H.: An ergodic theorem for repeated and continuous measurements. Preprint
Kümmerer B., Maassen H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)
ADS
MathSciNet
Article
MATH
Google Scholar
Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719–3729 (1998)
ADS
MathSciNet
Article
MATH
Google Scholar
Kurchan, J.: A quantum fluctuation theorem. Preprint arXiv:cond-mat/0007360 (2000)
Känemäki A., Vilppolainen M.: Dimensions and measures on sub-self-affine sets. Monatsh. Math. 161, 271–293 (2010)
MathSciNet
Article
MATH
Google Scholar
Landau L.D., Lifshitz E.M.: Statistical Physics. Pergamon Press, Oxford (1978)
MATH
Google Scholar
Le Ny A.: Introduction to (generalized) Gibbs measures. Ensaios Matematicos 15, 1–126 (2008)
MathSciNet
MATH
Google Scholar
Lebowitz J.L., Spohn H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)
ADS
MathSciNet
Article
MATH
Google Scholar
Lindblad G.: Non-Markovian quantum stochastic processes and their entropy. Commun. Math. Phys. 65, 281–294 (1979)
ADS
MathSciNet
Article
MATH
Google Scholar
Maes C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)
ADS
MathSciNet
Article
MATH
Google Scholar
Maes C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)
Google Scholar
Maes C., Netočný K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)
MathSciNet
Article
MATH
Google Scholar
Maes C., Verbitskiy E.: Large deviations and a fluctuation symmetry for chaotic homeomorphisms. Commun. Math. Phys. 233, 137–151 (2003)
ADS
MathSciNet
Article
MATH
Google Scholar
Merkli M., Penney M.: Quantum measurements of scattered particles. Mathematics 3, 92–118 (2015)
Article
MATH
Google Scholar
Mermin N.D.: What’s wrong with this pillow?. Phys. Today 42, 9–11 (1989)
Article
Google Scholar
Ohya M., Petz D.: Quantum Entropy and its Use, 2nd edn. Springer, Berlin (2004)
MATH
Google Scholar
Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)
MATH
Google Scholar
Pólya G., Szegö G.: Problems and Theorems in Analysis I. Springer, Berlin (1978)
MATH
Google Scholar
Rondoni L., Mejía-Monasterio C.: Fluctuations in non-equilibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20, 1– (2007)
ADS
MathSciNet
Article
MATH
Google Scholar
Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1972)
MATH
Google Scholar
Ruelle, D.: Thermodynamic Formalism. The Mathematical Structure of Equilibrium Statistical Mechanics. 2nd edn. Cambridge University Press, Cambridge (2004)
Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)
ADS
MathSciNet
Article
MATH
Google Scholar
Struppa, D.C., Tollaksen, J.M. (eds) Quantum Theory: A Two Time Success Story. Yakir Aharonov Festschrift. Springer, Milan (2014)
Srivastava Y.N., Vitiello G., Widom A.: Quantum measurements, information, and entropy production. Int. J. Mod. Phys. B 13, 3369–3382 (1999)
ADS
MathSciNet
Article
MATH
Google Scholar
Tasaki, H.: Jarzynski relations for quantum systems and some applications. Preprint arXiv:cond-mat/0009244 (2000)
van Enter A.C.D.: On the possible failure of the Gibbs property for measures on lattice systems. Markov Proc. Relat. Fields 2, 209–224 (1996)
MathSciNet
MATH
Google Scholar
von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)
MATH
Google Scholar
Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer, Berlin, 1982
Wigner E.P.: The problem of measurement. Amer. J. Phys. 31, 6–15 (1963)
ADS
MathSciNet
Article
MATH
Google Scholar
Wiseman H.M., Milburn G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)
Book
MATH
Google Scholar
Yi J., Kim Y.W.: Nonequilibrium work by quantum projective measurments. Phys. Rev. E 88, 032105 (2013)
ADS
Article
Google Scholar
Zeh H.D.: The Physical Basis of the Direction of Time. Springer, New York (2007)
MATH
Google Scholar