Skip to main content
Log in

Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let (Σ,σ) be a full shift space on an alphabet consisting ofm symbols and letM: Σ→L +(ℝd, ℝd) be a continuous function taking values in the set ofd×d positive matrices. Denote by λ M (x) the upper Lyapunov exponent ofM atx. The set of possible Lyapunov exponents is just an interval. For any possible Lyapunov exponentα, we prove the following variational formula,\(\begin{gathered} \dim \left\{ {x \in \Sigma :\lambda _M \left( x \right) = \alpha } \right\} = \frac{1}{{\log m}} _{q \in \mathbb{R}}^{\inf } \left\{ { - \alpha q + P_M (q)} \right\} \hfill \\ = \frac{1}{{\log m}} _\mu ^{\max } \left\{ {h\left( \mu \right):M_ * \left( \mu \right) = \alpha } \right\} \hfill \\ \end{gathered} \), where dim is the Hausdorff dimension or the packing dimension,P M(q) is the pressure function ofM, μ is aσ-invariant Borel probability measure on Σ,h(μ) is the entropy ofμ, and\(M_ * (\mu ) = \mathop {\lim }\limits_{x \to \infty } \frac{1}{n}\int {\log \left\| {M(y)M(\sigma y)...M(\sigma ^{n - 1} y)} \right\|d\mu \left( y \right)} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira, Y. Pesin and J. Schmeling,On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos7 (1997), 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Barreira and B. Saussol,Multifractal analysis of hyperbolic flows, Communications in Mathematical Physics214 (2000), 339–371.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Barreira and J. Schmeling,Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel Journal of Mathematics116 (2000), 29–70.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. S. Besicovitch,On the sum of digits of real numbers represented in the dyadic system, Mathematische Annalen110 (1934), 321–330.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Billingsley,Ergodic Theory and Information, Wiley, New York, 1965.

    MATH  Google Scholar 

  6. R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics470, Springer-Verlag, Berlin, 1975.

    MATH  Google Scholar 

  7. G. Brown, G. Michon and J. Peyriere,On the multifractal analysis of measures, Journal of Statistical Physics66 (1992), 775–790.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Cawley and R. D. Mauldin,Multifractal decompositions of Moran fractals, Advances in Mathematics92 (1992), 196–236.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Collet, J. L. Lebowitz and A. Porzio,The dimension spectrum of some dynamical systems, Journal of Statistical Physics47 (1987), 609–644.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. G. Eggleston,The fractional dimension of a set defined by decimal properties, The Quarterly Journal of Mathematics. Oxford20 (1949), 31–46.

    Article  MathSciNet  Google Scholar 

  11. K. J. Falconer,Fractal Geometry: Mathematical Foundation and Applications, Wiley, New York, 1990.

    Google Scholar 

  12. A. H. Fan and D. J. Feng,On the distribution of long-term time average on the symbolic space, Journal of Statistical Physics99 (2000), 813–856. See also:Analyse multifractale de la récurrence sur l’espace symbolique, Comptes Rendus de l’Académie des Sciences, Paris, Série I327 (1998), 629–632.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. H. Fan, D. J. Feng and J. Wu,Recurrence, dimension and entropy, Journal of the London Mathematical Society (2)64 (2001), 229–244.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. H. Fan and K. S. Lau,Iterated function systems and Ruelle transfer operator, Journal of Mathematical Analysis and Applications231 (1999), 319–344.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. J. Feng,The variational principle for products of non-negative matrices, submitted to Nonlinearity.

  16. D. J. Feng and K. S. Lau,The pressure function for products of non-negative matrices, Mathematical Research Letters9 (2002), 363–378.

    MATH  MathSciNet  Google Scholar 

  17. D. J. Feng, K. S. Lau and J. Wu,Ergodic Limits on the conformal repeller, Advances in Mathematics169 (2002), 58–91.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. J. Feng, H. Rao and J. Wu,The net measure properties of symmetric Cantor sets and their applications, Progress in Natural Science7 (1997), 172–178.

    MATH  MathSciNet  Google Scholar 

  19. D. J. Feng, Z. Y. Wen and J. Wu,Some dimensional results for homogeneous Moran sets, Science in China, Series A40 (1997), 475–482.

    MATH  MathSciNet  Google Scholar 

  20. U. Frisch and G. Parisi,Fully developed turbulence and intermittency in turbulence and predictability in geophysical fluid dynamics and climate dynamics, inInternational School of Physics “Enrico Fermi”, course 88 (M. Ghil, ed.), North-Holland, Amsterdam, 1985.

    Google Scholar 

  21. H. Furstenberg and H. Kesten,Products of random matrices, Annals of Mathematical Statistics31 (1960), 457–469.

    MathSciNet  MATH  Google Scholar 

  22. T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. J. Shraiman,Fractal measures and their singularities: The characterization of strange sets, Physical Review A33 (1986), 1141–1151.

    Article  MathSciNet  Google Scholar 

  23. Y. Heurteaux,Estimations de la dimension inferieure et de la dimension superieure des mesures, Annales de l’Institut Henri Poincaré34 (1998), 309–338.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. A. Horn and C. R. Johnson,Matrix Analysis, Cambridge University Press, 1987.

  25. S. Jaffard and Y. Meyer,Pointwise behavior of functions, Memoirs of the American Mathematical Society, No. 123, 1996.

  26. K. S. Lau and S. M. Ngai,Multifractal measures and a weak separation condition, Advances in Mathematics141 (1999), 45–96.

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Ledrappier and A. Porzio,On the multifractal analysis of Bernoulli convolutions. I. Large deviations results. II. Dimensions, Journal of Statistical Physics82 (1996), 367–420.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Mattila,Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge University Press, 1995.

  29. E. Olivier,Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures, Nonlinearity12 (1999), 1571–1585.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Olsen,A multifractal formalism, Advances in Mathematics116 (1995), 82–196.

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Olsen and S. Winter,Normal and non-normal points of self-similar sets and divergence points of self-similar measures, Journal of the London Mathematical Society (2)67 (2003), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  32. Y. Pesin,Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997.

    Google Scholar 

  33. Y. Pesin and H. Weiss,A multifractal analysis of Gibbs measures for conformal expanding maps and Markov Moran geometry constructions, Journal of Statistical Physics86 (1997), 233–275.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Pollicott and H. Weiss,Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Communications in Mathematical Physics207 (1999), 145–171.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Porzio,On the regularity of the multifractal spectrum of Bernoulli convolutions, Journal of Statistical Physics91 (1998), 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. T. Rockafellar,Convex Analysis, Princeton University Press, 1970.

  37. P. Walters,An Introduction to Ergodic Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

    MATH  Google Scholar 

  38. H. Weiss,The Lyapunov spectrum for conformal expanding maps and Axiom-A surface diffeomorphisms, Journal of Statistical Physics95 (1999), 615–632.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. S. Young,Dimension, entropy and Lyapunov exponents, Ergodic Theory and Dynamical Systems2 (1982), 109–124.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author was partially supported by a HK RGC grant in Hong Kong and the Special Funds for Major State Basic Research Projects in China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, DJ. Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices. Isr. J. Math. 138, 353–376 (2003). https://doi.org/10.1007/BF02783432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783432

Keywords

Navigation