Communications in Mathematical Physics

, Volume 357, Issue 1, pp 77–123 | Cite as

On Entropy Production of Repeated Quantum Measurements I. General Theory



We study entropy production (EP) in processes involving repeated quantum measurements of finite quantum systems. Adopting a dynamical system approach, we develop a thermodynamic formalism for the EP and study fine aspects of irreversibility related to the hypothesis testing of the arrow of time. Under a suitable chaoticity assumption, we establish a Large Deviation Principle and a Fluctuation Theorem for the EP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AAV.
    Aharonov Y., Albert D.Z., Vaidman L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  2. AD.
    Acz̀el J., Daròczy Z.: On Measures of Information and their Characterizations. Academic Press, New York (1975)Google Scholar
  3. ABL.
    Aharonov Y., Bergmann P.G., Lebowitz J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. AV.
    Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review. In: Muga G., Sala Mayato R., Egusquiza I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol 1, 734, pp. 399–447, 2nd ed. Springer, Berlin (2008)Google Scholar
  5. Ba.
    Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. World Scientific, River Edge, NJ (2000)Google Scholar
  6. BaL.
    Barreira L.: Almost additive thermodynamic formalism: some recent developments. Rev. Math. Phys. 22, 1147–1179 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. BaY.
    Barsheshat, Y.: Masters thesis, McGill, (2015)Google Scholar
  8. BSS.
    Batalhão T.B., Souza A.M., Sarthour R.S., Oliveira I.S., Paternostro M., Lutz E., Serra R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)ADSCrossRefGoogle Scholar
  9. BB.
    Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)ADSCrossRefGoogle Scholar
  10. BBB.
    Bauer M., Benoist T., Bernard D.: Repeated quantum non-demolition measurements: convergence and continuous-time limit. Ann. Henri Poincaré 14, 639–679 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. BFFS.
    Ballesteros M., Fraas M., Fröhlich J., Schubnel B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162, 924–958 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. BFS.
    Blanchard P., Fröhlich J., Schubnel B.: A “Garden of Forking Paths”—the quantum mechanics of histories of events. Nucl. Phys. B. 912, 463–484 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. BG.
    Barchielli A., Gregoratti M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, vol 782 Lecture Notes in Physics. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  14. BJPP1.
    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples. (in preparation)Google Scholar
  15. BJPP2.
    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the nature of the quantum detailed balance condition. (in preparation)Google Scholar
  16. BJPP3.
    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the Rényi entropy of repeated quantum measurements. (in preparation)Google Scholar
  17. Bo.
    Bohm D.: Quantum Theory. Prentice Hall, New York (1951)Google Scholar
  18. BV.
    Bomfim T., Varandas P.: Multifractal analysis of the irregular set for almost-additive sequences via large deviations. Nonlinearity 28, 3563–3585 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. Bo1.
    Bowen R.: Some systems with unique equilibrium state. Math. Syst. Theory 8, 193–202 (1974)MathSciNetCrossRefMATHGoogle Scholar
  20. Bo2.
    Bowen R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol 470. Lecture Notes in Mathematics. Springer, Berlin (1975)CrossRefGoogle Scholar
  21. Ca.
    Carmichael H.: An Open Systems Approach to Quantum Optics, vol 18. Lecture Notes in Physics Monographs M. Springer, Berlin (1993)Google Scholar
  22. CHT.
    Campisi M., Hänggi P., Talkner P.: Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011)ADSCrossRefMATHGoogle Scholar
  23. CFH.
    Cao Y.-L., Feng D.-J., Huang W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)MathSciNetMATHGoogle Scholar
  24. Cr1.
    Crooks G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  25. Cr2.
    Crooks G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)ADSCrossRefGoogle Scholar
  26. CZC.
    Chen Y., Zhao Y., Cheng W.-C.: Sub-additive pressure on a Borel set. Acta Math. Scient. 35, 1203–1213 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. Da.
    Davies E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)MATHGoogle Scholar
  28. dH.
    den Hollander F.: Large Deviations. Fields Institute Monographs, AMS, Providence (2000)MATHGoogle Scholar
  29. Der.
    Derriennic Y.: Un théorème ergodique presque sous-additif. Ann. Proba. 11, 669–677 (1983)CrossRefMATHGoogle Scholar
  30. DL.
    Deffner S., Lutz E.: Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)ADSCrossRefGoogle Scholar
  31. DZ.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Second edition. Applications of Mathematics 38. Springer, New York 1998Google Scholar
  32. Do.
    Dobrushin, R.L.: A Gibbsian representation for non-Gibbsian fields. Lecture given at the workshop Probability and Physics, September 1995, Renkum, NetherlandsGoogle Scholar
  33. DoS.
    Dobrushin R.L., Shlosman S.B.: Non-Gibbsian states and their Gibbs description. Comm. Math. Phys. 200, 125–179 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. ECM.
    Evans D.J., Cohen E.G.D., Morriss G.P.: Probability of second law violation in shearing steady flows. Phys. Rev. Lett. 71, 2401–2404 (1993)ADSCrossRefMATHGoogle Scholar
  35. Ed.
    Eddington A.S.: The Nature of the Physical World. McMillan, London (1928)MATHGoogle Scholar
  36. EHK.
    Evans D.E., Høegh-Krohn R.: Spectral properties of positive maps on C *-algebras. J. Lond. Math. Soc. 17, 345–355 (1978)MathSciNetCrossRefMATHGoogle Scholar
  37. EHM.
    Esposito M., Harbola U., Mukamel S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. El.
    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin, 1985. Reprinted in the series Classics of Mathematics (2006)Google Scholar
  39. ES.
    Evans D.J., Searles D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)ADSCrossRefGoogle Scholar
  40. Fa.
    Falconer K.J.: Sub-self-similar set. Transactions AMS 347, 3121–3129 (1995)MathSciNetCrossRefMATHGoogle Scholar
  41. FNW.
    Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. Fe1.
    Feng D.-J.: The variational principle for products of non-negative matrices. Nonlinearity 17, 447–457 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. Fe2.
    Feng D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part I: positive matrices. Isr. J. Math. 138, 353–376 (2003)CrossRefMATHGoogle Scholar
  44. Fe3.
    Feng D.-J.: Lyapounov exponents for products of matrices and multifractal analysis. Part II: general matrices. Isr. J. Math. 170, 355–394 (2009)CrossRefMATHGoogle Scholar
  45. FL.
    Feng D.-J., Lau K.-S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. FK.
    Feng D.-J., Känemäki A.: Equilibrium states for the pressure function for products of matrices. Discrete Contin. Dyn. Syst. 30, 699–708 (2011)MathSciNetCrossRefGoogle Scholar
  47. Fe.
    Fernandez, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier A., Dalibard J., Dunlop F., van Enter A., den Hollander F. (eds.) Mathematical Statistical Physics, Elsevier (2006)Google Scholar
  48. FS.
    Falconer, K.J., Sloan, A.: Continuity of subadditive pressure for self-affine sets. Real Anal. Exch. 34, 1–16, (2008/2009)Google Scholar
  49. GC1.
    Gallavotti G., Cohen E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)ADSCrossRefGoogle Scholar
  50. GC2.
    Gallavotti G., Cohen E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. GPP.
    Grigolini P., Pala G.M., Palatella L.: Quantum measurement and entropy production. Phys. Lett. A 285, 49–54 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  52. He.
    Heisenberg W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)ADSCrossRefMATHGoogle Scholar
  53. Ho.
    Holevo A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics Monographs, M 67. Springer, Berlin (2001)Google Scholar
  54. HMPZ.
    Halliwel JJ, Pérez-Mercader J, Zurek WH (eds) (1996) Physical Origins of Time Asymmetry. Cambridge University Press, CambridgeGoogle Scholar
  55. IY.
    Iommi G., Yayama Y.: Almost-additive thermodynamic formalism for countable Markov shifts. Nonlinearity 25, 165–191 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. Ja.
    Jakšić V (2015) Lectures on Entropy. Preprint, McGillGoogle Scholar
  57. JNPPS.
    Jakšić, V., Nersesyan, V., Pillet, C.-A., Porta, M., and Shirikyan, A.: (In preparation)Google Scholar
  58. JOPP.
    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Roeck, W. de , Mastropietro, V., Cugliandolo, L.F. Quantum Theory from Small to Large Scales., pp. Oxford University Press, Oxford (2012)Google Scholar
  59. JOPS.
    Jakšić V., Ogata Y., Pillet C.-A., Seiringer R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)MathSciNetCrossRefMATHGoogle Scholar
  60. JPR.
    Jakšić V., Pillet C.-A., Rey-Bellet L.: Entropic fluctuations in statistical mechanics I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  61. JPS.
    Jakšić, V., Pillet, C.-A., Shirikyan, A.: Entropic fluctuations in thermally driven harmonic networks. J. Stat. Phys. (2016) doi: 10.1007/s10955-016-1625-6
  62. JPW.
    Jakšić V., Pillet C.-A., Westrich M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154, 153–187 (2014)MathSciNetCrossRefMATHGoogle Scholar
  63. Jar.
    Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  64. KM1.
    Kümmerer, B., and Maassen, H.: An ergodic theorem for repeated and continuous measurements. PreprintGoogle Scholar
  65. KM2.
    Kümmerer B., Maassen H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  66. KM1.
    Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719–3729 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  67. Ku2.
    Kurchan, J.: A quantum fluctuation theorem. Preprint arXiv:cond-mat/0007360 (2000)
  68. KW.
    Känemäki A., Vilppolainen M.: Dimensions and measures on sub-self-affine sets. Monatsh. Math. 161, 271–293 (2010)MathSciNetCrossRefMATHGoogle Scholar
  69. LL.
    Landau L.D., Lifshitz E.M.: Statistical Physics. Pergamon Press, Oxford (1978)MATHGoogle Scholar
  70. LN.
    Le Ny A.: Introduction to (generalized) Gibbs measures. Ensaios Matematicos 15, 1–126 (2008)MathSciNetMATHGoogle Scholar
  71. LS.
    Lebowitz J.L., Spohn H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  72. Li.
    Lindblad G.: Non-Markovian quantum stochastic processes and their entropy. Commun. Math. Phys. 65, 281–294 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  73. Ma1.
    Maes C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  74. Ma2.
    Maes C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)Google Scholar
  75. MN.
    Maes C., Netočný K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)MathSciNetCrossRefMATHGoogle Scholar
  76. MV.
    Maes C., Verbitskiy E.: Large deviations and a fluctuation symmetry for chaotic homeomorphisms. Commun. Math. Phys. 233, 137–151 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  77. MP.
    Merkli M., Penney M.: Quantum measurements of scattered particles. Mathematics 3, 92–118 (2015)CrossRefMATHGoogle Scholar
  78. MND.
    Mermin N.D.: What’s wrong with this pillow?. Phys. Today 42, 9–11 (1989)CrossRefGoogle Scholar
  79. OP.
    Ohya M., Petz D.: Quantum Entropy and its Use, 2nd edn. Springer, Berlin (2004)MATHGoogle Scholar
  80. Pe.
    Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)MATHGoogle Scholar
  81. PS.
    Pólya G., Szegö G.: Problems and Theorems in Analysis I. Springer, Berlin (1978)MATHGoogle Scholar
  82. RM.
    Rondoni L., Mejía-Monasterio C.: Fluctuations in non-equilibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20, 1– (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  83. Ro.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1972)MATHGoogle Scholar
  84. Ru1.
    Ruelle, D.: Thermodynamic Formalism. The Mathematical Structure of Equilibrium Statistical Mechanics. 2nd edn. Cambridge University Press, Cambridge (2004)Google Scholar
  85. Ru2.
    Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  86. ST.
    Struppa, D.C., Tollaksen, J.M. (eds) Quantum Theory: A Two Time Success Story. Yakir Aharonov Festschrift. Springer, Milan (2014)Google Scholar
  87. SVW.
    Srivastava Y.N., Vitiello G., Widom A.: Quantum measurements, information, and entropy production. Int. J. Mod. Phys. B 13, 3369–3382 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  88. Ta.
    Tasaki, H.: Jarzynski relations for quantum systems and some applications. Preprint arXiv:cond-mat/0009244 (2000)
  89. VE.
    van Enter A.C.D.: On the possible failure of the Gibbs property for measures on lattice systems. Markov Proc. Relat. Fields 2, 209–224 (1996)MathSciNetMATHGoogle Scholar
  90. VN.
    von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATHGoogle Scholar
  91. Wa.
    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer, Berlin, 1982Google Scholar
  92. Wi.
    Wigner E.P.: The problem of measurement. Amer. J. Phys. 31, 6–15 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  93. WM.
    Wiseman H.M., Milburn G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  94. YY.
    Yi J., Kim Y.W.: Nonequilibrium work by quantum projective measurments. Phys. Rev. E 88, 032105 (2013)ADSCrossRefGoogle Scholar
  95. Ze.
    Zeh H.D.: The Physical Basis of the Direction of Time. Springer, New York (2007)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CNRS, Laboratoire de Physique Théorique, IRSAMCUniversité de Toulouse, UPSToulouseFrance
  2. 2.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  3. 3.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  4. 4.Aix Marseille Univ, Univ Toulon, CNRS, CPTMarseilleFrance

Personalised recommendations