Skip to main content
Log in

Relative Entropy Bounds on Quantum, Private and Repeater Capacities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We find a strong-converse bound on the private capacity of a quantum channel assisted by unlimited two-way classical communication. The bound is based on the max-relative entropy of entanglement and its proof uses a new inequality for the sandwiched Rényi divergences based on complex interpolation techniques. We provide explicit examples of quantum channels where our bound improves upon both the transposition bound (on the quantum capacity assisted by classical communication) and the bound based on the squashed entanglement. As an application, we study a repeater version of the private capacity assisted by classical communication and provide an example of a quantum channel with high private capacity but negligible private repeater capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Takeoka M., Guha S., Wilde M.M.: The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60((8), 4987–4998 (2014)

    Article  MathSciNet  Google Scholar 

  3. Holevo A.S., Werner R.F.: Evaluating capacities of bosonic gaussian channels. Phys. Rev. A 63, 032312 (2001)

    Article  ADS  Google Scholar 

  4. Müller-Hermes A., Reeb D., Wolf M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57((1), 015202 (2016)

    Article  ADS  MATH  Google Scholar 

  5. Berta M., Brando F.G.S.L., Christandl M., Wehner S.: Entanglement cost of quantum channels. IEEE Trans. Inf. Theory 59(10), 6779–6795 (2013)

    Article  MathSciNet  Google Scholar 

  6. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: The ultimate rate of quantum cryptography. arXiv preprint arXiv:1510.08863 (2015)

  7. Pirandola, S.: Optimal performance of a quantum network. arXiv preprint arXiv:1601.00966 (2016)

  8. Takeoka, M., Seshadreesan, K.P., Wilde, M.M.: Unconstrained distillation capacities of a pure-loss bosonic broadcast channel. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2484–2488 (2016)

  9. Wilde M.M., Tomamichel M., Berta M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63(3), 1792–1817 (2017)

    Article  Google Scholar 

  10. Pant M., Krovi H., Englund D., Guha S.: Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Phys. Rev. A 95, 012304 (2017)

    Article  ADS  Google Scholar 

  11. Laurenza, R., Pirandola, S.: General bounds for sender–receiver capacities in multipoint quantum communications. arXiv preprint arXiv:1603.07262 (2016)

  12. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. Choi M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Its Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Secure key from bound entanglement. Phys. Rev. Lett. 94(16), 160502 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Datta N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  16. Datta N.: Max-relative entropy of entanglement, alias log robustness. Int. J. Quantum Inf. 7(02), 475–491 (2009)

    Article  MATH  Google Scholar 

  17. Bäuml, S., Christandl, M., Horodecki, K., Winter, A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015)

  18. Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Umegaki H.: Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Sem. Rep. 14(2), 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beigi S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Penrose R.: A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc. 51, 406–413 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bergh J., Löfström J.: Interpolation Spaces: An Introduction, vol. 223. Springer, New York (2012)

    MATH  Google Scholar 

  24. Müller-Hermes, A., Reeb, D.: Monotonicity of the quantum relative entropy under positive maps. Ann. Henri Poincaré 18(5), 1777–1788 (2017)

  25. Frank R.L., Lieb E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Brandão F.G., Plenio M.B.: A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys. 295(3), 829–851 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Brandao F.G., Plenio M.B.: A generalization of quantum Steins lemma. Commun. Math. Phys. 295(3), 791–828 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Chitambar E., Leung D., Mančinska L., Ozols M., Winter A.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328(1), 303–326 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Christandl M., Winter A.: Squashed entanglement: an additive entanglement measure. J. Math. Phy. 45(3), 829–840 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Tucci, R.R.: Entanglement of distillation and conditional mutual information. arXiv preprint arXiv:quant-ph/0202144 (2002)

  32. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002)

  33. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: General paradigm for distilling classical key from quantum states. IEEE Trans. Inf. Theory 55(4), 1898–1929 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fuchs C.A., Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tomamichel M., Wilde M.M., Winter A.: Strong converse rates for quantum communication. IEEE Trans. Inf. Theory 63(1), 715–727 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Locking entanglement with a single qubit. Phys. Rev. Lett. 94(20), 200501 (2005)

    Article  ADS  MATH  Google Scholar 

  37. Roy A., Scott A.J.: Unitary designs and codes. Des. Codes Cryptogr. 53(1), 13–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Horodecki M., Shor P.W., Ruskai M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(06), 629–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Christandl, M., Winter, A.: Uncertainty, monogamy and locking of quantum correlations. In: Proceedings of the International Symposium on Information Theory, 2005. ISIT 2005, pp. 879–883 (2005)

  40. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  41. Rains E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pisier G., Xu Q.: Non-commutative Lp-spaces. Handb. Geom. Banach Spaces 2, 1459–1517 (2003)

    Article  MATH  Google Scholar 

  43. Bowen G., Bose S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87(26), 267901 (2001)

    Article  ADS  Google Scholar 

  44. Christandl M., Schuch N., Winter A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Müller-Hermes.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christandl, M., Müller-Hermes, A. Relative Entropy Bounds on Quantum, Private and Repeater Capacities. Commun. Math. Phys. 353, 821–852 (2017). https://doi.org/10.1007/s00220-017-2885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2885-y

Navigation