Skip to main content
Log in

Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a “sandwiched” Rényi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amosov, G.G., Holevo, A.S., Werner, R.F.: On some additivity problems in quantum information theory. Probl. Inform. Transm. 36(4), 25 (2000). arXiv:math-ph/0003002

  2. Arimoto S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inform. Theory 19, 357–359 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013). arXiv:1306.5920

  4. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A.:Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217–3220 (1997) arXiv:quant-ph/9701015

  5. Berta, M., Renes, J.M., Wilde, M.M.: Identifying the information gain of a quantum measurement. (2013). arXiv:1301.1594

  6. Brádler, K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inform. Theory 57(8), 5497–5503 (2011). arXiv:0903.1638

  7. Brádler, K., Dutil, N., Hayden, P., Muhammad, A.: Conjugate degradability and the quantum capacity of cloning channels. J. Math. Phys. 51(7), 072201 (2010). arXiv:0909.3297

  8. Brádler, K., Hayden, P., Panangaden, P.: Private information via the Unruh effect. J. High Energy Phys. 2009(08), 074 (2009). arXiv:0807.4536

  9. Brito, F., DiVincenzo, D.P., Koch, R.H., Steffen, M.: Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit. New J. Phys. 10(3), 033027 (2008)

  10. Buscemi, F., Hayashi, M., Horodecki, M.: Global information balance in quantum measurements. Phys. Rev. Lett. 100, 210504 (2008). arXiv:quant-ph/0702166

  11. Busch P.: Informationally complete sets of physical quantities. Int. J. Theor. Phys. 30(9), 1217–1227 (1991)

    Article  MathSciNet  Google Scholar 

  12. Carlen E.A.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)

    Article  MathSciNet  Google Scholar 

  13. Carlen, E.A., Lieb, E.H.: A Minkowski type trace inequality and strong subadditivity of the quantum entropy II. Lett. Math. Phys. 83(2), 107–126 (2008) arXiv:0710.4167

  14. Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de finetti theorems. In: Theory of Quantum Computation, Communication, and Cryptography. Lecture Notes in Computer Science, vol. 6519, pp. 9–25 (2011). arXiv:1010.1875

  15. Csiszár I.: Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inform. Theory 41(1), 26–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dall’Arno, M., D’Ariano, G.M., Sacchi, M.F.: Informational power of quantum measurements. Phys. Rev. A 83, 062304 (2011). arXiv:1103.1972

  17. Datta, N., Holevo, A.S., Suhov, Y.: Additivity for transpose depolarizing channels. Int. J. Quantum Infor. 4(1), 85–98 (2006). arXiv:quant-ph/0412034

  18. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005). arXiv:quant-ph/0311131

  19. Dupuis, F., Fawzi, O., Wehner, S.: Entanglement sampling and applications. May 2013. arXiv:1305.1316

  20. Dupuis, F., Szehr, O., Tomamichel, M.: unpublished notes (2013)

  21. El Gamal A., Kim Y.-H.: Network Information Theory. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. Fehr, S.: On the conditional Rényi entropy. In: Lecture at the Beyond IID Workshop at the University of Cambridge, January (2013)

  23. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013). arXiv:1306.5358

  24. Fukuda, M.: Extending additivity from symmetric to asymmetric channels. J. Phys. A Math. General 38(45), L753–L758 (2005). arXiv:quant-ph/0505022

  25. Gallager R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  26. Gupta, M.K., Wilde, M.M.: Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity. October (2013). arXiv:1310.7028

  27. Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66(6), 062311 (2002). arXiv:quant-ph/0204159

  28. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009). arXiv:0809.3972

  29. Holevo A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inform. Transm. 9, 177–183 (1973)

    MathSciNet  Google Scholar 

  30. Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans Inform Theory 44(1), 269–273 (1998). arXiv:quant-ph/9611023

  31. Holevo A.S.: Quantum coding theorems. Russ. Math. Surv. 53, 1295–1331 (1999)

    Article  Google Scholar 

  32. Holevo A.S.: Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory. Russ. Math. Surv. 61(2), 301–339 (2006)

    Article  MATH  Google Scholar 

  33. Holevo, A.S.: Information capacity of quantum observable. Probl. Inform. Transm. 48, 1 (2012) arXiv:1103.2615

  34. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003) arXiv:quant-ph/0302031

  35. Jacobs, K.: On the properties of information gathering in quantum and classical measurements (2003). arXiv:quant-ph/0304200v1

  36. King, C.: Additivity for unital qubit channels. J. Math. Phys. 43(10), 4641–4653 (2002). arXiv:quant-ph/0103156

  37. King, C.: An application of the Lieb-Thirring inequality in quantum information theory. In: Fourteenth International Congress on Mathematical Physics, pp. 486–490 (2003). arXiv:quant-ph/0412046

  38. King, C.: The capacity of the quantum depolarizing channel. IEEE Trans. Inform. Theory 49(1), 221–229 (2003). arXiv:quant-ph/0204172

  39. King, C.: Maximal p-norms of entanglement breaking channels. Quantum Inform. Comput. 3(2), 186–190 (2003). arXiv:quant-ph/0212057

  40. King, C., Matsumoto, K., Nathanson, M., Ruskai, M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13(2), 391–423 (2007). J. T. Lewis memorial issue, arXiv:quant-ph/0509126

  41. Koenig, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103, 070504 (2009). arXiv:0903.2838

  42. Koenig, R., Wehner, S., Wullschleger, J.: Unconditional security from noisy quantum storage. IEEE Trans. Inform. Theory, 58(3), 1962–1984 (2012). arXiv:0906.1030

  43. Lamas-Linares A., Simon C., Howell J.C., Bouwmeester D.: Experimental quantum cloning of single photons. Science 296, 712–714 (2002)

    Article  ADS  Google Scholar 

  44. Leung, D., Smith, G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292(1), 201–215 (2009). arXiv:0810.4931

  45. Lieb, E.H., Thirring, W.: Studies in mathematical physics. In: Inequalities for the Moments of the Eigenvalues of the Schroedinger Hamiltonian and their Relation to Sobolev Inequalities, pp. 269–297. Princeton University Press, Princeton (1976)

  46. Matthews, W.: A linear program for the finite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes. IEEE Trans. Inform. Theory, 58(12), 7036–7044 (2012). arXiv:1109.5417

  47. Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels. October (2012). arXiv:1210.4722

  48. Milonni P.W., Hardies M.L.: Photons cannot always be replicated. Phys. Lett. A 92(7), 321–322 (1982)

    Article  ADS  Google Scholar 

  49. Mosonyi, M., Hiai, F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inform Theory 57(4), 2474–2487 (2011). arXiv:0912.1286

  50. Müller-Lennert, M.: Quantum relative Rényi entropies. Master’s thesis, ETH Zurich, April (2013)

  51. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). arXiv:1306.3142

  52. Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEEE Trans. Inform. Theory 45(7), 2486–2489 (1999). arXiv:quant-ph/9808063

  53. Ohya M., Petz D., Watanabe N.: On capacities of quantum channels. Probab. Math. Stat. Wroclaw Univ. 17, 179–196 (1997)

    MATH  MathSciNet  Google Scholar 

  54. Oreshkov, O., Calsamiglia, J., Muñoz-Tapia, R., Bagan, E.: Optimal signal states for quantum detectors. New J. Phys. 13(7), 073032 (2011) arXiv:1103.2365

  55. Petz D.: Quasi-entropies for finite quantum systems. Reports Math. Phys. 23, 57–65 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Polyanskiy, Y., Verdú, S.: Arimoto channel coding converse and Rényi divergence. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computation, pp. 1327–1333 (2010)

  57. Prugovečki E.: Information-theoretical aspects of quantum measurement. Int. J. Theor. Phys. 16, 321–331 (1977)

    Article  MATH  Google Scholar 

  58. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 21712180 (2004). arXiv:quant-ph/0310075

  59. Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)

    Article  ADS  Google Scholar 

  60. Schumacher B., Westmoreland M.D.: Optimal signal ensembles. Phys. Rev. A 63, 022308 (2001)

    Article  ADS  Google Scholar 

  61. Sharma, N., Warsi, N.A.: On the strong converses for the quantum channel capacity theorems (2012). arXiv:1205.1712

  62. Shor, P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43(9), 4334–4340 (2002). arXiv:quant-ph/0201149

  63. Sibson R.: Information radius. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 14(2), 149160 (1969)

    Article  MathSciNet  Google Scholar 

  64. Simon C., Weihs G., Zeilinger A.: Optimal quantum cloning via stimulated emission. Phys. Rev. Lett. 84(13), 2993–2996 (2000)

    Article  ADS  Google Scholar 

  65. Sion M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  66. Stinespring W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MATH  MathSciNet  Google Scholar 

  67. Tomamichel, M.: A Framework for Non-Asymptotic Quantum Information Theory. PhD thesis, ETH Zurich (2012) arXiv:1203.2142

  68. Tomamichel, M.: Smooth entropies—a tutorial: with focus on applications in cryptography. Tutorial at QCRYPT 2012, slides available at http://2012.qcrypt.net/docs/slides/Marco.pdf, Sept (2012)

  69. Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976)

    Article  ADS  Google Scholar 

  70. Wilde, M.M., Hayden, P., Buscemi, F., Hsieh, M.-H.: The information-theoretic costs of simulating quantum measurements. J. Phys. A Math. Theor. 45(45), 453001 (2012). arXiv:1206.4121

  71. Winter A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inform. Theory 45(7), 2481–2485 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  72. Winter, A.: Coding Theorems of Quantum Information Theory. PhD thesis, Universität Bielefeld (1999). arXiv:quant-ph/9907077

  73. Winter, A.: “Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures. Commun. Math. Phy. 244, 157 (2004). arXiv:quant-ph/0109050

  74. Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture Notes Available at http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf. July (2012)

  75. Wolfowitz J.: The coding of messages subject to chance errors. Ill. J. Math. 1, 591–606 (1957)

    MATH  MathSciNet  Google Scholar 

  76. Wolfowitz J.: Coding Theorems of Information Theory. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  77. Yard, J., Hayden, P., Devetak, I.: Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions. IEEE Trans. Inform. Theory 54(7), 3091–3113 (2008). arXiv:quant-ph/0501045

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilde, M.M., Winter, A. & Yang, D. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. Commun. Math. Phys. 331, 593–622 (2014). https://doi.org/10.1007/s00220-014-2122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2122-x

Keywords

Navigation