Skip to main content
Log in

Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The fully quantum reverse Shannon theorem establishes the optimal rate of noiseless classical communication required for simulating the action of many instances of a noisy quantum channel on an arbitrary input state, while also allowing for an arbitrary amount of shared entanglement of an arbitrary form. Turning this theorem around establishes a strong converse for the entanglement-assisted classical capacity of any quantum channel. This paper proves the strong converse for entanglement-assisted capacity by a completely different approach and identifies a bound on the strong converse exponent for this task. Namely, we exploit the recent entanglement-assisted “meta-converse” theorem of Matthews and Wehner, several properties of the recently established sandwiched Rényi relative entropy (also referred to as the quantum Rényi divergence), and the multiplicativity of completely bounded p-norms due to Devetak et al. The proof here demonstrates the extent to which the Arimoto approach can be helpful in proving strong converse theorems, it provides an operational relevance for the multiplicativity result of Devetak et al., and it adds to the growing body of evidence that the sandwiched Rényi relative entropy is the correct quantum generalization of the classical concept for all α > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 20–30 (1998). arXiv:quant-ph/9806029

  2. Arimoto S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory 19, 357–359 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Audenaert, K.M.R., Calsamiglia, J., Muñoz Tapia, R., Bagan, E., Masanes, Ll., Acin, A., Verstraete, F.: Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007). arXiv:quant-ph/0610027

  4. Audenaert K.M.R., Nussbaum M., Szkoła A., Verstraete F.: Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279(1), 251–283 (2008). arXiv:0708.4282

    Article  ADS  MATH  Google Scholar 

  5. Beigi S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013) arXiv:1306.5920

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett C.H., Devetak I., Harrow A.W., Shor P.W., Winter A.: Quantum reverse Shannon theorem. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014) arXiv:0912.5537

    Article  MathSciNet  Google Scholar 

  7. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081–3084 (1999) arXiv:quant-ph/9904023

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637–2655 (2002). arXiv:quant-ph/0106052

  9. Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615 (2011). arXiv:0912.3805

  10. Bowen, G.: Quantum feedback channels. IEEE Trans. Inf. Theory 50, 2429–2433 (2004). arXiv:quant-ph/0209076

  11. Brun, T.A., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science. 314(5798), 436–439 (2006). arXiv:quant-ph/0610092

  12. Brun, T.A., Devetak, I., Hsieh, M.-H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60(6), 3073–3089 (2014). arXiv:quant-ph/0608027

  13. Carlen E.A.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)

    Article  MathSciNet  Google Scholar 

  14. Carlen E.A., Lieb E.H.: A Minkowski type trace inequality and strong subadditivity of the quantum entropy II. Lett. Math. Phys. 83(2), 107–126 (2008) arXiv:0710.4167

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Datta N., Hsieh M.-H., Wilde M.M.: Quantum rate distortion, reverse Shannon theorems, and source-channel separation. IEEE Trans. Inf. Theory 59, 615–630 (2013) arXiv:1108.4940

    Article  MathSciNet  Google Scholar 

  16. Datta, N., Leditzky, F.: A limit of the quantum R ényi divergence. J. Phys. A Math. Theor. 47(4), 045304 (2014). arXiv:1308.5961

  17. Devetak, I., Junge, M., King, C., Ruskai, M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006). arXiv:quant-ph/0506196

  18. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54, 122201 (2013). arXiv:1306.5358

  19. García-Patrón, R., Pirandola, S., Lloyd, S., Shapiro, J.H.: Reverse coherent information. Phys. Rev. Lett. 102(21), 210501 (2009). arXiv:0808.0210

  20. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005). arXiv:quant-ph/0408063

  21. Hayashi M.: Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A 76, 062301 (2007) arXiv:quant-ph/0611013

    Article  ADS  Google Scholar 

  22. Holevo A.S.: On entanglement assisted classical capacity. J. Math. Phys. 43(9), 4326–4333 (2002) arXiv:quant-ph/0106075

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Hsieh, M.-H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79(3), 032340 (2009). arXiv:0803.0100

  24. Hsieh, M.-H., Yen, W.-T., Hsu, L.-Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011). arXiv:0906.5532

  25. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. Commun. ACM 53(12), 102–109 (2010). arXiv:0905.1300

  26. Jencova, A.: A relation between completely bounded norms and conjugate channels. Commun. Math. Phys. 266(1), 65–70 (2006). arXiv:quant-ph/0601071

  27. Kitaev A.: Quantum computations: algorithms and error correction. Russian Math. Surv. 52(6), 1191–1249 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Koenig, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103, 070504 (2009). arXiv:0903.2838

  29. Koenig R., Wehner S., Wullschleger J.: Unconditional security from noisy quantum storage. IEEE Trans. Inf. Theory 58(3), 1962–1984 (2012) arXiv:0906.1030

    Article  Google Scholar 

  30. Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, pp. 269–297. Princeton University Press, Princeton (1976)

  32. Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels (2012). arXiv: 1210.4722

  33. Morgan C., Winter A.: strong” converse for the quantum capacity of degradable channels. IEEE Trans. Inf. Theory 60(1), 317–333 (2014) arXiv:1301.4927

    Article  MathSciNet  Google Scholar 

  34. Mosonyi M., Hiai F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57(4), 2474–2487 (2011) arXiv:0912.1286

    Article  MathSciNet  Google Scholar 

  35. Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies (2013). arXiv:1309.3228

  36. Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013) arXiv:1306.3142

    Article  ADS  MathSciNet  Google Scholar 

  37. Nagaoka, H.: The converse part of the theorem for quantum Hoeffding bound (2006). arXiv:quant-ph/0611289

  38. Nussbaum M., Szkoła A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37(2), 1040–1057 (2009) arXiv:quant-ph/0607216

    Article  MATH  Google Scholar 

  39. Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEEE Trans. Inf. Theory 45(7), 2486–2489 (1999). arXiv:quant-ph/9808063

  40. Polyanskiy, Y., Verdú, S.: Arimoto channel coding converse and Rényi divergence. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computation, pp. 1327–1333 (2010)

  41. Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations. In: Proceedings of the 20th IEEE Conference on Computational Complexity, pp. 344–354 (2005). arXiv:cs/0407056

  42. Sacchi M.F.: Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A 72, 014305 (2005) arXiv:quant-ph/0505174

    Article  ADS  MathSciNet  Google Scholar 

  43. Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sharma, N., Warsi, N.A.: On the strong converses for the quantum channel capacity theorems (2012). arXiv:1205.1712

  45. Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  46. Watrous, J.: Simpler semidefinite programs for completely bounded norms. Chicago J. Theor. Comput. Sci. 2013(8), 1–19 (2013). arXiv:1207.5726

  47. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445

  48. Wilde M.M., Hsieh M.-H., Babar Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60(2), 1203–1222 (2013) arXiv:1010.1256v3

    Article  MathSciNet  Google Scholar 

  49. Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014) arXiv:1306.1586

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Gupta.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.K., Wilde, M.M. Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity. Commun. Math. Phys. 334, 867–887 (2015). https://doi.org/10.1007/s00220-014-2212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2212-9

Keywords

Navigation