Skip to main content
Log in

Gradient Bounds and Rigidity Results for Singular, Degenerate, Anisotropic Partial Differential Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Wulff-type energy functional,

$$\fancyscript{W}_\Omega(u) := \int_\Omega B( H( \nabla u (x) ) ) - F(u(x)) \, dx,$$

where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate quasilinear equation in an anisotropic medium.

We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbel E., Cahn J.W.: A method for the absolute measurement of anisotropic surface free energies. Surf. Sci. 66, 14–24 (1977)

    Article  ADS  Google Scholar 

  2. Bellettini G., Novaga M., Paolini M.: Characterization of facet breaking for non-smooth mean curvature flow in the convex case. Interfaces and Free Bound. 3, 415–446 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellettini G., Novaga M., Paolini M.: On a crystalline variational problem, part I: first variation and global \({L^\infty}\) regularity. Arch. Ration. Mech. Anal. 157, 165–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli L., Garofalo N., Segàla F.: A gradient bound for entire solutions of quasi-linear equations and its consequences. Comm. Pure Appl. Math. 47, 1457–1473 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Castellaneta D., Farina A., Valdinoci E.: A pointwise gradient estimate for solutions of singular and degenerate PDE’s in possibly unbounded domains with nonnegative mean curvature. Commun. Pure Appl. Anal. 11, 1983–2003 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chernov A.A.: Modern Crystallography III. Crystal Growth. Springer, Berlin (1984)

    Book  Google Scholar 

  7. Cianchi A., Salani P.: Overdetermined anisotropic elliptic problems. Math. Ann. 345, 859–881 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clarenz U.: The Wulff shape minimizes an anisotropic Willmore functional. Interfaces Free Bound. 6, 351–359 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Benedetto, E.: \({C^{1+\alpha}}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

  10. Dinghas A.: Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen. Z. Kristallogr. 105, 304–314 (1944)

    MATH  MathSciNet  Google Scholar 

  11. Esedoḡlu S., Osher S.J.: Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Commun. Pure Appl. Math. 57, 1609–1626 (2004)

  12. Farina A., Sciunzi B., Valdinoci E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 741–791 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Farina A., Valdinoci E.: A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225, 2808–2827 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Farina, A., Valdinoci, E.: Gradient bounds for anisotropic partial differential equations. Calc. Var. Partial Differ. Equ. 49(3–4), 923–936 (2014). doi:10.1007/s00526-013-0605-9 (2013)

  15. Fonseca I., Müller S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119, 125–136 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Giga Y.: Surface evolution equations. A level set approach. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  17. Gurtin M.E.: Thermomechanics of evolving phase boundaries in the plane. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  18. Hörmander L.: The analysis of linear partial differential operators II. Differential operators with constant coefficients, Reprint of the 1983 original. Springer, Berlin (2005)

    Google Scholar 

  19. Ladyzhenskaya O.A., Uraltseva N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  20. Modica L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Comm. Pure Appl. Math. 38, 679–684 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Müller-Krumbhaar H., Burkhardt T.W., Kroll D.M.: A generalized kinetic equation for crystal growth. J. Crystal Growth 38, 13–22 (1977)

    Article  ADS  Google Scholar 

  22. Novaga M., Paolini E.: A computational approach to fractures in crystal growth. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 10, 47–56 (1999)

    MATH  MathSciNet  Google Scholar 

  23. Osher S., Burger M., Goldfarb D., Xu J., Yin W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Payne L.E.: Some remarks on maximum principles. J. Anal. Math. 30, 421–433 (1976)

    Article  MATH  Google Scholar 

  25. Piccinini L.C., Stampacchia G., Vidossich G.: Ordinary differential equations in \({\mathbb{R}^n}\). Problems and methods. Springer, New York (1984)

  26. Sperb R.P.: Maximum Principles and Their Applications. Academic Press, New York (1981)

    MATH  Google Scholar 

  27. Taylor J.E.: Crystalline variational problems. Bull. Amer. Math. Soc. 84, 568–588 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Taylor J.E., Cahn J.W., Handwerker C.A.: Geometric models of crystal growth. Acta Metall. 40, 1443–1474 (1992)

    Article  Google Scholar 

  29. Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equ. 51, 126–160 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Wang G., Xia C.: A Characterization of the Wulff Shape by an Overdetermined Anisotropic PDE. Arch. Ration. Mech. Anal. 199, 99–115 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Wulff G.: Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflachen. Z. Kristallogr. Mineral. 34, 449–530 (1901)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cozzi.

Additional information

Communicated by L.Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzi, M., Farina, A. & Valdinoci, E. Gradient Bounds and Rigidity Results for Singular, Degenerate, Anisotropic Partial Differential Equations. Commun. Math. Phys. 331, 189–214 (2014). https://doi.org/10.1007/s00220-014-2107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2107-9

Keywords

Navigation