Skip to main content
Log in

Ising Critical Exponents on Random Trees and Graphs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when \({\tau \in (2,3]}\) where this mean equals infinity.

We further study the critical exponents δ, β and γ, describing how the (root) magnetization behaves close to criticality. We rigorously identify these critical exponents and show that they take the values as predicted by Dorogovstev et al. (Phys Rev E 66:016104, 2002) and Leone et al. (Eur Phys J B 28:191–197, 2002). These values depend on the power-law exponent τ, taking the same values as the mean-field Curie-Weiss model (Exactly solved models in statistical mechanics, Academic Press, London, 1982) for τ > 5, but different values for \({\tau \in (3,5)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous D., Lyons R.: Processes on unimodular random networks. Electron. J. Probabl. 12, 1454–1508 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Baxter R.J.: Exactly solved models in statistical mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  3. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Selected Works of Oded Schramm, pp. 533–545. Springer, New York (2011)

  4. Benjamini, I., Lyons, R., Schramm, O.: Unimodular random trees. To appear in Ergodic Theory and Dynamical Systems (2013)

  5. Bordenave, C., Caputo, P.: Large deviations of empirical neighborhood distribution in sparse random graphs. Preprint, arXiv:1308.5725 (2013)

  6. Bricmont J., Lebowitz J.L.: On the continuity of the magnetization and energy in Ising ferromagnets. J. Stat. Phys. 42(5–6), 861–869 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bricmont J., Lebowitz J.L., Messager A.: First-order phase transitions in Potts and Ising systems. Phys. Lett. A 95(3), 169–172 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Britton T., Deijfen M., Martin-Löf A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124, 1377–1397 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Chatterjee S., Durrett R.: Contact processes on random graphs with power law degree distributions have critical value 0. Annals Probabl. 37(6), 2332–2356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dembo A., Montanari A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probabl. Stat. 24, 137–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dembo A., Montanari A.: Ising models on locally tree-like graphs. Annals Appl. Probabl. 20(2), 565–592 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dembo, A., Montanari, A., Sly, A., Sun, N.: The replica symmetric solution for Potts models on d-regular graphs. Preprint, arXiv:1207.5500 (2012). doi:10.1007/s00220-014-1956-6

  13. Dembo A., Montanari A., Sun N.: Factor models on locally tree-like graphs. Annals Probabl. 41(6), 4162–4213 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dolan B.P., Janke W., Johnston D.A., Stathakopoulos M.: Thin Fisher zeros. J. Phys. A Math. General 34(32), 6211–6223 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dommers S., Giardinà C., van der Hofstad R.: Ising models on power-law random graphs. J. Stat. Phys. 141(4), 638–660 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  16. Dorogovtsev S.N., Goltsev A.V., Mendes J.F.F.: Ising models on networks with an arbitrary distribution of connections. Phys. Rev. E 66, 016104 (2002)

    Article  ADS  Google Scholar 

  17. Dorogovtsev S.N., Goltsev A.V., Mendes J.F.F.: Critical phenomena in complex networks. Rev. Modern Phys. 80(4), 1275–1335 (2008)

    Article  ADS  Google Scholar 

  18. Dshalalow J.H.: Real analysis: an introduction to the theory of real functions and integration. Chapman & Hall/CRC, London (2001)

    Google Scholar 

  19. Evans W., Kenyon C., Peres Y., Schulman L.J.: Broadcasting on trees and the Ising model. Annals Appl. Probabl. 10(2), 410–433 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Griffiths R.B., Hurst C.A., Sherman S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11(3), 790–795 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  21. Halmos P.: Measure theory. D. Van Nostrand Company, Inc., New York, NY (1950)

    Book  MATH  Google Scholar 

  22. Itô, K. (ed.): Encyclopedic dictionary of mathematics, second edition. The MIT Press, Cambridge (1993)

    Google Scholar 

  23. Janson S., Luczak M.J.: A new approach to the giant component problem. Random Struct. Algorithms 34(2), 197–216 (2008)

    MathSciNet  Google Scholar 

  24. Kelly D.G., Sherman S.: General Griffiths’ inequalities on correlations in Ising ferromagnets. J. Math. Phys. 9(3), 466–484 (1968)

    Article  ADS  Google Scholar 

  25. Lee T.D., Yang C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410–419 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Leone M., Vázquez A., Vespignani A., Zecchina R.: Ferromagnetic ordering in graphs with arbitrary degree distribution. Eur. Phys. J. B 28, 191–197 (2002)

    Article  ADS  Google Scholar 

  27. Lyons R.: The Ising model and percolation on trees and tree-like graphs. Commun. Math. Phys. 125, 337–353 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Lyons R.: Random walks and percolation on trees. Annals Probabl. 18(3), 931–958 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lyons R., Pemantle R., Peres Y.: Ergodic theory on Galton-Watson trees: speed of the random walk and dimension of harmonic measure. Ergod. Theory Dyn. Systems 15, 593–619 (1995)

    MathSciNet  Google Scholar 

  30. Mézard M., Montanari A.: Reconstruction on trees and spin glass transition. J. Stat. Phys. 124(6), 1317–1350 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  31. Newman M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Niss M.: History of the Lenz–Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch. Histor. Exact Sci. 59(3), 267–318 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Niss M.: History of the Lenz–Ising model 1950–1965: from irrelevance to relevance. Arch. Histor. Exact Sci. 63(3), 243–287 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Niss M.: History of the Lenz–Ising model 1965–1971: the role of a simple model in understanding critical phenomena. Arch. Histor. Exact Sci. 65(6), 625–658 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. De Sanctis L., Guerra F.: Mean field dilute ferromagnet: high temperature and zero temperature behavior. J. Stat. Phys. 132, 759–785 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Giardinà.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dommers, S., Giardinà, C. & van der Hofstad, R. Ising Critical Exponents on Random Trees and Graphs. Commun. Math. Phys. 328, 355–395 (2014). https://doi.org/10.1007/s00220-014-1992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1992-2

Keywords

Navigation