Skip to main content
Log in

Lagrangian Floer Superpotentials and Crepant Resolutions for Toric Orbifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold \({\mathcal{X}}\) and that of its toric crepant resolution Y coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Ruan’s original CRC (Gromov-Witten theory of spin curves and orbifolds, contemp math, Amer. Math. Soc., Providence, RI, pp 117–126, 2006). We prove the open CRC for the weighted projective spaces \({\mathcal{X} = \mathbb{P}(1,\ldots,1, n)}\) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs, preprint, arXiv:hep-th/0012041

  2. Audin, M.: The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics, Vol. 93, Basel: Birkhäuser Verlag, 1991. (Translated from the French by the author. MR 1106194 (92m:57046))

  3. Auroux, D.: Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In: Surveys in Differential Geometry. Vol. XIII. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Surv. Differ. Geom., Vol. 13, Somerville, MA: Int. Press, 2009, pp. 1–47. MR 2537081 (2010j:53181)

  4. Boissière S., Mann E., Perroni F.: The cohomological crepant resolution conjecture for \({\mathbb{P}(1, 3, 4, 4)}\) . Internat. J. Math. 20(6), 791–801 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borisov, L., Chen, L., Smith, G.: The orbifold Chow ring of toric Deligne-Mumford stacks. J. Am. Math. Soc. 18(1), 193–215 (electronic). (2005) (MR 2114820 (2006a:14091))

    Google Scholar 

  6. Borisov L., Horja R.: Mellin-Barnes integrals as Fourier-Mukai transforms. Adv. Math. 207(2), 876–927 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brini, A., Cavalieri, R., Ross D.: Crepant resolutions and open strings, arXiv: 1309.4438 (preprint)

  8. Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic Geometry—seattle 2005. Part 1, Proc. Sympos. Pure Math., Vol. 80, Providence, RI: Amer. Math. Soc., 2009, pp. 23–42. (MR 2483931 (2009m:14083))

  9. Bryan J., Graber T., Pandharipande R.: The orbifold quantum cohomology of \({\mathbb{C}^2/Z_{3}}\) and Hurwitz-Hodge integrals. J. Algebraic Geom. 17(1), 1–28 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cavalieri R., Ross D.: Open Gromov-Witten theory and the crepant resolution conjecture. Mich. Math. J. 61(4), 807–837 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan K.: A formula equating open and closed Gromov-Witten invariants and its applications to mirror symmetry. Pac. J. Math. 254(2), 275–293 (2011)

    Article  MATH  Google Scholar 

  12. Chan, K., Lau, S.-C., Leung, N.C., Tseng, H.-H.: Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds, arXiv:1112.0388 (preprint)

  13. Chan, K., Lau, S.-C., Leung, N.C., Tseng, H.-H.: Open Gromov-Witten invariants and Seidel representations for toric manifolds, arXiv:1209.6119 (preprint)

  14. Chan K., Lau S.-C., Tseng H.-H.: Enumerative meaning of mirror maps for toric Calabi-Yau manifolds. Adv. Math. 244, 605–625 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, W., Ruan, Y.: Orbifold Gromov-Witten theory. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Providence, RI: Amer. Math. Soc., 2002, pp. 25–85. (MR 1950941 (2004k:53145))

  16. Chen W., Ruan Y.: A new cohomology theory of orbifold. Comm. Math. Phys. 248(1), 1–31 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Cho C.-H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys. 260(3), 613–640 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Cho C.-H., Oh Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4), 773–814 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cho, C.-H., Poddar, M.: Holomorphic orbidiscs and Lagrangian Floer cohomology of symplectic toric orbifolds, arXiv:1206.3994 (preprint)

  20. Cho, C.-H., Shin, H.-S.: Chern-Weil Maslov index and its orbifold analogue, arXiv:1202.0556 (preprint)

  21. Coates T.: On the crepant resolution conjecture in the local case. Comm. Math. Phys. 287(3), 1071–1108 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: A mirror theorem for toric stacks, arXiv:1310.4163 (preprint)

  23. Coates T., Givental A.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. of Math. (2) 165(1), 15–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Coates, T., Iritani, H., Jiang, Y.: The crepant transformation conjecture in the toric case (in preparation)

  25. Coates T., Iritani H., Tseng H.-H.: Wall-crossings in toric Gromov-Witten theory. I. Crepant examples. Geom. Topol. 13(5), 2675–2744 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Coates T., Ruan Y.: Quantum cohomology and crepant resolutions: a conjecture. Ann. Inst. Fourier (Grenoble) 63(2), 431–478 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fantechi B., Mann E., Nironi F.: Smooth toric Deligne-Mumford stacks. J. Reine Angew. Math. 648, 201–244 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory and mirror symmetry on compact toric manifolds, arXiv:1009.1648 (preprint)

  29. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part I. In: AMS/IP Studies in Advanced Mathematics, Vol. 46, Providence, RI: American Mathematical Society, 2009. (MR 2553465 (2011c:53217))

  30. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part II. In: AMS/IP Studies in Advanced Mathematics, Vol. 46, Providence, RI: American Mathematical Society, 2009. (MR 2548482 (2011c:53218))

  31. Fukaya K., Oh Y.-G., Ohta H., Ono K.: Lagrangian Floer theory on compact toric manifolds, I. Duke Math. J. 151(1), 23–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Fukaya K., Oh Y.-G., Ohta H., Ono K.: Lagrangian Floer theory on compact toric manifolds II: bulk deformations. Selecta Math. (N.S.) 17(3), 609–711 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Toric degeneration and nondisplaceable Lagrangian tori in \({S^2 \times S^2}\) . Int. Math. Res. Not. IMRN (13), 2942–2993 (2012) (MR 2946229)

  34. Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies, Vol. 131, Princeton, NJ: Princeton University Press, 1993. (The William H. Roever Lectures in Geometry. MR 1234037 (94g:14028))

  35. Givental, A.: Symplectic geometry of Frobenius structures, Frobenius manifolds, Aspects Math., E36, Friedr. Wiesbaden: Vieweg, 2004, pp. 91–112. (MR 2115767 (2005m:53172))

  36. Gonzalez, E., Woodward, C.: Quantum cohomology and toric minimal model programs, arXiv:1207.3253 (preprint)

  37. Gonzalez, E., Woodward, C.: A wall-crossing formula for Gromov-Witten invariants under variation of git quotient, arXiv:1208.1727 (preprint)

  38. Hori, K., Vafa, C.: Mirror symmetry, arXiv:hep-th/0002222 (preprint)

  39. Iritani H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Jiang Y.: The orbifold cohomology ring of simplicial toric stack bundles. Ill. J. Math. 52(2), 493–514 (2008)

    Google Scholar 

  41. Lau S.-C., Leung N.C., Wu B.: A relation for Gromov-Witten invariants of local Calabi-Yau threefolds. Math. Res. Lett. 18(5), 943–956 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lerman E., Tolman S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Am. Math. Soc. 349(10), 4201–4230 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Perroni F.: Chen-Ruan cohomology of ADE singularities. Internat. J. Math. 18(9), 1009–1059 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ruan, Y.: The cohomology ring of crepant resolutions of orbifolds. In: Gromov-Witten Theory of Spin Curves and Orbifolds, contemp. Math., Vol. 403, Providence, RI: Amer. Math. Soc., 2006, pp. 117–126

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Hyun Cho.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K., Cho, CH., Lau, SC. et al. Lagrangian Floer Superpotentials and Crepant Resolutions for Toric Orbifolds. Commun. Math. Phys. 328, 83–130 (2014). https://doi.org/10.1007/s00220-014-1948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1948-6

Keywords

Navigation