Communications in Mathematical Physics

, Volume 323, Issue 1, pp 177–239 | Cite as

Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law

Article

Abstract

In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem:
$$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$
$$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$
where Ω is a bounded domain in \({\mathbf{R}^{d}, 1 \leq d \leq 3}\), Kn is the Knudsen number and \({\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}\) is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for \({|\theta -\theta_{0}|\leq \delta \ll 1}\) and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion \({F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}\) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki K., Lukkarinen J., Spohn H.: Energy Transport in Weakly Anharmonic Chains. J. Stat. Phys. 124, 1105–1129 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Arkeryd L., Esposito R., Marra R., Nouri A.: Stability for Rayleigh-Benard convective solutions of the Boltzmann equation. Arch. Rat. Mech. Anal. 198(1), 125–187 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arkeryd L., Esposito R., Marra R., Nouri A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models. 4(1), 109–138 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arkeryd L., Nouri A.: L 1 solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413 (2000)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arkeryd L., Nouri A.: The stationary Boltzmann equation in R n with given indata. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 359–385 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Arkeryd L., Nouri A.: Asymptotic techniques for kinetic problems of Boltzmann type. In: Proceedings of the 3rd edition of the summer school in “Methods and Models of kinetic theory”. Riv. Mat. Univ. Parma. 7, 1–74 (2007)MathSciNetGoogle Scholar
  7. 7.
    Basile G., Olla S., Spohn H.: Wigner functions and stochastically perturbed lattice dynamics. Arch. Rat. Mech. Anal. 195, 171–203 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Boltzmann, L.: Further studies on the thermal equilibrium of gas molecules, 88–174 in Kinetic Theory 2, ed. S.G. Brush, Pergamon, Oxford: Oxford Univ Press, 1966, pp. 88–174Google Scholar
  9. 9.
    Bonetto, F., Lebowitz, J.L., Ray-Bellet, L.: Fourier’s law: A challenge to theorists. Mathematical physics 2000, London: Imp. Coll. Press, 2000, pp. 128–150Google Scholar
  10. 10.
    Cercignani, C.: The Boltzmann Equation and its Applications. New York: Springer-Verlag, 1987Google Scholar
  11. 11.
    Cercignani,C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Berlin-Heidelberg-New York: Springer-Verlag, 1994Google Scholar
  12. 12.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press, 1991Google Scholar
  13. 13.
    Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Di Perna R.J., Lions P.L.: On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability. Ann. Math. 130, 321–366 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Di Perna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolve spaces. Invent. Math. 98, 511–547 (1989)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Esposito R., Guo Y., Marra R.: Phase transition in a Vlasov-Boltzmann binary mixture. Commun. Math. Phys. 296(1), 1–33 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Esposito R., Lebowitz J.L., Marra R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Esposito R., Lebowitz J.L., Marra R.: The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. de Méc. 9(3), 183–231 (1970)MathSciNetGoogle Scholar
  20. 20.
    Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. de Méc. 11(2), 443–490 (1972)MathSciNetGoogle Scholar
  21. 21.
    Guiraud, J.P.: An H-theorem for a gas of rigid spheres in a bounded domain. In: Pichon, G. (ed.) Theories cinetique classique et relativistes, Paris: CNRS, 1975, pp. 29–58Google Scholar
  22. 22.
    Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Guo Y.: The Vlasov-Landau-Poisson system in a periodic box. J. Amer. Math. Soc. 25, 759–812 (2012)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Guo Y.: Bounded solutions for the Boltzmann equation. Quart. Appl. Math. 68(1), 143–148 (2010)MathSciNetMATHGoogle Scholar
  25. 25.
    Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Rat. Mech. Anal. 197(3), 713–809 (2010)MATHCrossRefGoogle Scholar
  26. 26.
    Guo Y., Jang J.: Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 299(2), 469–501 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Guo Y., Jang J., Jiang N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63(3), 337–361 (2010)MathSciNetMATHGoogle Scholar
  28. 28.
    Gressman P., Strain R.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kim C.: Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains. Commun. Math. Phys. 308(3), 641–701 (2011)ADSMATHCrossRefGoogle Scholar
  30. 30.
    Kim, C.: Boltzmann equation with a large external field. Comm. PDE (2011) to appearGoogle Scholar
  31. 31.
    Maxwell J.C.: On the Dynamical Theory of gases. Phil. Trans. Roy. Soc. London 157, 49–88 (1866)Google Scholar
  32. 32.
    Ohwada, T., Aoki, K., Sone, Y.: Heat transfer and temperature distribution in a rarefied gas between two parallel plates with different temperatures: Numerical analysis of the Boltzmann equation for a hard sphere molecule. In: Rarefied Gas Dynamics: Theoretical and Computational Techniques, edited by E. P. Muntz, D. P. Weaver, D. H. Campbell, Washington, DC: AIAA, 1989Google Scholar
  33. 33.
    Olla, S.: Energy diffusion and superdiffusion in oscillators lattice neworks. New trends in Math. Phys., 539–547 (2009)Google Scholar
  34. 34.
    Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2007Google Scholar
  35. 35.
    Sone, Y.: Kinetic theory and fluid dynamics. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2002Google Scholar
  36. 36.
    Speck J., Strain R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Strain R.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Ukai, S.: Solutions to the Boltzmann Equations. In: Pattern and Waves - Qualitative Analysis of Nonlinear Differential Equations, Amsterdam: North Holland, 1986, pp. 37–96Google Scholar
  39. 39.
    Ukai S.: On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation. Proc. Japan Acad. A 53, 179–184 (1974)MathSciNetGoogle Scholar
  40. 40.
    Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Villani, C.: A Review of Mathematical Problems in Collisional Kinetic Theory. In: Handbook of Fluid Mechanics, D. Serre, S. Friedlander ed., Vol. 1, London: Elsevier, 2003Google Scholar
  42. 42.
    Villani, C. : Hypocoercivity. Mem. Amer. Math. Soc. 202, no. 950 (2009)Google Scholar
  43. 43.
    Yu S.-H.: Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation. Arch. Rat. Mech. Anal. 192(2), 217–274 (2009)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.International Research Center M&MOCSUniv. dell’AquilaCisterna di LatinaItaly
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA
  3. 3.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK
  4. 4.Dipartimento di Fisica and Unità INFNUniversità di Roma Tor VergataRomaItaly

Personalised recommendations