Communications in Mathematical Physics

, Volume 323, Issue 1, pp 177–239

# Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law

Article

## Abstract

In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem:
$$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1)$$
$$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2)$$
where Ω is a bounded domain in $${\mathbf{R}^{d}, 1 \leq d \leq 3}$$, Kn is the Knudsen number and $${\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}$$ is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for $${|\theta -\theta_{0}|\leq \delta \ll 1}$$ and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion $${F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}$$ and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Aoki K., Lukkarinen J., Spohn H.: Energy Transport in Weakly Anharmonic Chains. J. Stat. Phys. 124, 1105–1129 (2006)
2. 2.
Arkeryd L., Esposito R., Marra R., Nouri A.: Stability for Rayleigh-Benard convective solutions of the Boltzmann equation. Arch. Rat. Mech. Anal. 198(1), 125–187 (2010)
3. 3.
Arkeryd L., Esposito R., Marra R., Nouri A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models. 4(1), 109–138 (2011)
4. 4.
Arkeryd L., Nouri A.: L 1 solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413 (2000)
5. 5.
Arkeryd L., Nouri A.: The stationary Boltzmann equation in R n with given indata. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 359–385 (2002)
6. 6.
Arkeryd L., Nouri A.: Asymptotic techniques for kinetic problems of Boltzmann type. In: Proceedings of the 3rd edition of the summer school in “Methods and Models of kinetic theory”. Riv. Mat. Univ. Parma. 7, 1–74 (2007)
7. 7.
Basile G., Olla S., Spohn H.: Wigner functions and stochastically perturbed lattice dynamics. Arch. Rat. Mech. Anal. 195, 171–203 (2010)
8. 8.
Boltzmann, L.: Further studies on the thermal equilibrium of gas molecules, 88–174 in Kinetic Theory 2, ed. S.G. Brush, Pergamon, Oxford: Oxford Univ Press, 1966, pp. 88–174Google Scholar
9. 9.
Bonetto, F., Lebowitz, J.L., Ray-Bellet, L.: Fourier’s law: A challenge to theorists. Mathematical physics 2000, London: Imp. Coll. Press, 2000, pp. 128–150Google Scholar
10. 10.
Cercignani, C.: The Boltzmann Equation and its Applications. New York: Springer-Verlag, 1987Google Scholar
11. 11.
Cercignani,C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Berlin-Heidelberg-New York: Springer-Verlag, 1994Google Scholar
12. 12.
Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press, 1991Google Scholar
13. 13.
Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)
14. 14.
Di Perna R.J., Lions P.L.: On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability. Ann. Math. 130, 321–366 (1989)
15. 15.
Di Perna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolve spaces. Invent. Math. 98, 511–547 (1989)
16. 16.
Esposito R., Guo Y., Marra R.: Phase transition in a Vlasov-Boltzmann binary mixture. Commun. Math. Phys. 296(1), 1–33 (2010)
17. 17.
Esposito R., Lebowitz J.L., Marra R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)
18. 18.
Esposito R., Lebowitz J.L., Marra R.: The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412 (1995)
19. 19.
Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. de Méc. 9(3), 183–231 (1970)
20. 20.
Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. de Méc. 11(2), 443–490 (1972)
21. 21.
Guiraud, J.P.: An H-theorem for a gas of rigid spheres in a bounded domain. In: Pichon, G. (ed.) Theories cinetique classique et relativistes, Paris: CNRS, 1975, pp. 29–58Google Scholar
22. 22.
Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)
23. 23.
Guo Y.: The Vlasov-Landau-Poisson system in a periodic box. J. Amer. Math. Soc. 25, 759–812 (2012)
24. 24.
Guo Y.: Bounded solutions for the Boltzmann equation. Quart. Appl. Math. 68(1), 143–148 (2010)
25. 25.
Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Rat. Mech. Anal. 197(3), 713–809 (2010)
26. 26.
Guo Y., Jang J.: Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 299(2), 469–501 (2010)
27. 27.
Guo Y., Jang J., Jiang N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63(3), 337–361 (2010)
28. 28.
Gressman P., Strain R.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)
29. 29.
Kim C.: Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains. Commun. Math. Phys. 308(3), 641–701 (2011)
30. 30.
Kim, C.: Boltzmann equation with a large external field. Comm. PDE (2011) to appearGoogle Scholar
31. 31.
Maxwell J.C.: On the Dynamical Theory of gases. Phil. Trans. Roy. Soc. London 157, 49–88 (1866)Google Scholar
32. 32.
Ohwada, T., Aoki, K., Sone, Y.: Heat transfer and temperature distribution in a rarefied gas between two parallel plates with different temperatures: Numerical analysis of the Boltzmann equation for a hard sphere molecule. In: Rarefied Gas Dynamics: Theoretical and Computational Techniques, edited by E. P. Muntz, D. P. Weaver, D. H. Campbell, Washington, DC: AIAA, 1989Google Scholar
33. 33.
Olla, S.: Energy diffusion and superdiffusion in oscillators lattice neworks. New trends in Math. Phys., 539–547 (2009)Google Scholar
34. 34.
Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2007Google Scholar
35. 35.
Sone, Y.: Kinetic theory and fluid dynamics. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2002Google Scholar
36. 36.
Speck J., Strain R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280 (2011)
37. 37.
Strain R.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597 (2010)
38. 38.
Ukai, S.: Solutions to the Boltzmann Equations. In: Pattern and Waves - Qualitative Analysis of Nonlinear Differential Equations, Amsterdam: North Holland, 1986, pp. 37–96Google Scholar
39. 39.
Ukai S.: On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation. Proc. Japan Acad. A 53, 179–184 (1974)
40. 40.
Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)
41. 41.
Villani, C.: A Review of Mathematical Problems in Collisional Kinetic Theory. In: Handbook of Fluid Mechanics, D. Serre, S. Friedlander ed., Vol. 1, London: Elsevier, 2003Google Scholar
42. 42.
Villani, C. : Hypocoercivity. Mem. Amer. Math. Soc. 202, no. 950 (2009)Google Scholar
43. 43.
Yu S.-H.: Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation. Arch. Rat. Mech. Anal. 192(2), 217–274 (2009)

## Copyright information

© Springer-Verlag Berlin Heidelberg 2013

## Authors and Affiliations

1. 1.International Research Center M&MOCSUniv. dell’AquilaCisterna di LatinaItaly
2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA
3. 3.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK
4. 4.Dipartimento di Fisica and Unità INFNUniversità di Roma Tor VergataRomaItaly