Skip to main content
Log in

The Dynamics of the 3D Radial NLS with the Combined Terms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we show the scattering and blow-up result of the radial solution with the energy below the threshold for the nonlinear Schrödinger equation (NLS) with the combined terms

$$iu_{t} + \Delta{u} = -|u|^{4}u + |u|^{2}u \qquad \qquad \qquad \qquad {\rm (CNLS)}$$

in the energy space \({{H^{1}(\mathbb{R}^{3})}}\) . The threshold is given by the ground state W for the energy-critical NLS: iu t +  Δu =  −|u|4 u. This problem was proposed by Tao, Visan and Zhang in (Comm PDEs 32:1281–1343, 2007). The main difficulty is lack of the scaling invariance. Illuminated by (Ibrahim et al., in Analysis & PDE 4(3):405–460, 2011), we need to give the new radial profile decomposition with the scaling parameter, then apply it to the scattering theory. Our result shows that the defocusing, \({{\dot{H}^{1}}}\) -subcritical perturbation |u|2 u does not affect the determination of the threshold of the scattering solution of (CNLS) in the energy space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T.: Problémes isopérimétriques et espaces de Sobolev. J. Diff. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math. 121, 131–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J.: Global well-posedness of defocusing 3D critical NLS in the radial case. J. Amer. Math. Soc. 12, 145–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Global solutions of nonlinear Schrödinger equations. Amer. Math. Soc. Colloq. Publ. 46, Providence, RT: Amer. Math. Soc., 1999

  5. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, Vol. 10. New York: New York University / Courant Institute of Mathematical Sciences, 2003

  6. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global existence and scattering for rough solution of a nonlinear Schrödinger equation on \({{\mathbb{R}^3}}\) . Comm. Pure Appl. Math. 57, 987–1014 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-cirtical nonlinear Schrödinger equation in \({{\mathbb{R}^3}}\) . Ann. of Math. 167, 767–865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodson B.: Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d ≥ 3. J. Amer. Math. Soc. 25(2), 429–463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dodson, B.: Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d = 2. http://arxiv.org/abs/1006.1375v2 [math.AP], 2011

  10. Dodson, B.: Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d = 1. http://arxiv.org/abs/1010.0040v2 [math.AP], 2011

  11. Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. http://arxiv.org/abs/1104.1114v2 [math.AP], 2011

  12. Duyckaerts T., Holmer J., Roudenko S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(5–6), 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. GAFA. 18(6), 1787–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duyckaerts T., Roudenko S.: Threshold solutions for the focusing 3D cubic Schrödinger equation. Revista. Math. Iber. 26(1), 1–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foschi D.: Inhomogeneous Strichartz estimates. J. Hyper. Diff. Eq. 2, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ginibre J., Velo G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equation. J. Math. Pures Appl. 64, 363–401 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Ginibre J., Velo G.: Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equation. Ann. Inst. H. Poincaré, Phys. Théor. 43(4), 399–442 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Holmer J., Roudenko S.: A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Ibrahim S., Masmoudi N., Nakanishi K.: Scattering threshold for the focusing nonlinear Klein-Gordon equation. Analysis & PDE. 4(3), 405–460 (2011)

    Article  MathSciNet  Google Scholar 

  20. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kenig C.E., Merle F.: Global well-posedness, scattering and blow up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keraani S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Diff. Eq. 175, 353–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keraani S.: On the blow up phenomenon of the critical Schrödinger equation. J. Funct. Anal. 265, 171–192 (2006)

    Article  MathSciNet  Google Scholar 

  25. Killip R., Tao T., Visan M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. 11(6), 1203–1258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Killip R., Visan M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Amer. J. Math. 132(2), 361–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Killip R., Visan M., Zhang X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Analysis & PDE. 1(2), 229–266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li D., Zhang X.: Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions. J. Funct. Anal. 256(6), 1928–1961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miao, C., Wu, Y., Xu, G.: Dynamics for the focusing, energy-critical nonlinear Hartree equation. Forum Math. doi:10.1515/Forum-2011-0087

  30. Miao C., Xu G., Zhao L.: Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case. Colloq. Math. 114, 213–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miao C., Xu G., Zhao L.: Global well-posedness and scattering for the mass-critical Hartree equation with radial data. J. Math. Pures Appl. 91, 49–79 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Nakanishi K.: Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2. J. Funct. Anal. 169, 201–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakanishi K.: Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations. Tohoku Math. J. 53, 285–303 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. PDE. 44(1-2), 1–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ogawa T., Tsutsumi Y.: Blow-up of H 1 solution for the nonlinear Schrödinger equation. J. Diff. Eq. 92, 317–330 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ryckman E., Visan M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \({{\mathbb{R}^{1+4}}}\) . Amer. J. Math. 129, 1–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura. Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao, T.: Nonlinear dispersive equations, local and global analysis, CBMS. Regional conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Science, Washington, DC; Providence, RI: Amer. Math. Soc., 2006

  39. Tao T., Visan M., Zhang X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm. PDEs. 32, 1281–1343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Visan M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang J.: Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal. T. M. A. 48(2), 191–207 (2002)

    Article  MATH  Google Scholar 

  42. Zhang X.: On Cauchy problem of 3D energy critical Schrödinger equation with subcritical perturbations. J. Diff. Eq. 230(2), 422–445 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxing Miao.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, C., Xu, G. & Zhao, L. The Dynamics of the 3D Radial NLS with the Combined Terms. Commun. Math. Phys. 318, 767–808 (2013). https://doi.org/10.1007/s00220-013-1677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1677-2

Keywords

Navigation