Skip to main content
Log in

Dynamical Collapse of Boson Stars

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the time evolution in a system of N bosons with a relativistic dispersion law interacting through a Newtonian gravitational potential with coupling constant G. We consider the mean field scaling where N tends to infinity, G tends to zero and λ = G N remains fixed. We investigate the relation between the many body quantum dynamics governed by the Schrödinger equation and the effective evolution described by a (semi-relativistic) Hartree equation. In particular, we are interested in the super-critical regime of large λ [the sub-critical case has been studied in Elgart and Schlein (Comm Pure Appl Math 60(4):500–545, 2007) and Knowles and Pickl (Commun Math Phys 298(1):101–138, 2010)], where the nonlinear Hartree equation is known to have solutions which blow up in finite time. To inspect this regime, we need to regularize the interaction in the many body Hamiltonian with an N dependent cutoff that vanishes in the limit N → ∞. We show, first, that if the solution of the nonlinear equation does not blow up in the time interval [−T, T], then the many body Schrödinger dynamics (on the level of the reduced density matrices) can be approximated by the nonlinear Hartree dynamics, just as in the sub-critical regime. Moreover, we prove that if the solution of the nonlinear Hartree equation blows up at time T (in the sense that the H 1/2 norm of the solution diverges as time approaches T), then also the solution of the linear Schrödinger equation collapses (in the sense that the kinetic energy per particle diverges) if tT and, simultaneously, N → ∞ sufficiently fast. This gives the first dynamical description of the phenomenon of gravitational collapse as observed directly on the many body level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos C., Golse F., Mauser N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Elgart A., Schlein B.: Mean field dynamics of boson stars. Comm. Pure Appl. Math. 60(4), 500–545 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Erdő L., Schlein B.: Quantum dynamics with mean field interactions: a new approach. J. Stat. Phys. 134(5), 859–870 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Erdő L., Schlein B., Yau H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Erdő L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. of Math. 172(1), 291–370 (2010)

    Article  MathSciNet  Google Scholar 

  6. Erdő L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev Lett. 98(4), 040404 (2007)

    Article  ADS  Google Scholar 

  7. Erdő L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22, 1099–1156 (2009)

    Article  MathSciNet  Google Scholar 

  8. Erdő L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MathSciNet  Google Scholar 

  9. Fröhlich J., Lenzmann E.: Blowup for nonlinear wave equations describing bosons stars. Comm. Pure Appl. Math. 60(11), 1691–1705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fröhlich J., Knowles A., Pizzo A.: Atomism and quantization. J. Phys. A: Math. Theor. 40, 3033–3045 (2007)

    Article  ADS  MATH  Google Scholar 

  11. Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons. II. http://arXiv.org/abs/1003.4713v1 [math-ph], 2010

  13. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems. I and II. Commun. Math. Phys. 66, 37–76 (1979); 68, 45–68 (1979)

  14. Gulisashvili A., Kon M. K.: Exact smoothing properties of Schrödinger semigroups. Amer. J. Math. 118, 1215–1248 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  16. Lenzmann E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10(1), 43–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieb E.H., Yau H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Lieb E.H., Thirring W.E.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. 155, 494–512 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  19. Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Pickl, P.: Derivation of the time dependent Gross Pitaevskii equation with external fields. http://arXiv.org/abs/1001.4894v2 [math-ph], 2010

  21. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schlein.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelangeli, A., Schlein, B. Dynamical Collapse of Boson Stars. Commun. Math. Phys. 311, 645–687 (2012). https://doi.org/10.1007/s00220-011-1341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1341-7

Keywords

Navigation