Skip to main content
Log in

On the Initial Conditions and Solutions of the Semiclassical Einstein Equations in a Cosmological Scenario

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we shall discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we shall deal with this problem in the realm of cosmological spacetimes by analyzing the Einstein equations in a semiclassical fashion. More precisely, we shall show that, at least on small intervals of time, solutions for this interacting system exist. This result will be achieved providing an iteration scheme and showing that the series, obtained starting from the massless solution, converges in the appropriate Banach space. The quantum states with good ultraviolet behavior (Hadamard property), used in order to obtain the backreaction, will be completely determined by their form on the initial surface if chosen to be lightlike. Furthermore, on small intervals of time, they do not influence the behavior of the exact solution. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we shall show that the end-point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we shall comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson P.R.: Effects Of Quantum Fields On Singularities And Particle Horizons In The Early Universe. 3. The Conformally Coupled Massive Scalar Field. Phys. Rev. D 32, 1302 (1985)

    Article  ADS  Google Scholar 

  2. Anderson P.R.: Effects Of Quantum Fields On Singularities And Particle Horizons In The Early Universe. 4. Initially Empty Universes. Phys. Rev. D 33, 1567 (1986)

    Article  ADS  Google Scholar 

  3. Anderson P.R., Eaker W.: Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes. Phys. Rev. D 61, 024003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bär, C., Ginoux, N., Pfäffle, F.: “Wave equations on Lorentzian manifolds and quantization”. ESI Lectures in Mathematics and Physics, Zürich: European Math. Soc. Publishing House, 2007.

  5. Brevik I., Odintsov S.D.: Quantum Annihilation of Anti-de Sitter Universe. Phys. Lett. B475, 247 (2000)

    ADS  MathSciNet  Google Scholar 

  6. Brunetti R., Duetsch M., Fredenhagen K.: Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Brunetti, R., Fredenhagen, K.: “Quantum Field Theory on Curved Backgrounds.” In: Lecture Notes in Physics 786, Bär, C., Fredenhagen, K., eds. Berlin-Heidelberg-New York: Springer, 2009, pp. 129–156

  9. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    Article  ADS  MATH  Google Scholar 

  10. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  11. Bunch T.S., Davies P.C.W.: Quantum Fields theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A 360, 117 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dappiaggi C., Fredenhagen K., Pinamonti N.: Stable cosmological models driven by a free quantum scalar field. Phys. Rev. D 77, 104015 (2008)

    Article  ADS  Google Scholar 

  13. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129–1163 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Degner A., Verch R.: Cosmological particle creation in states of low energy. J. Math. Phys. 51, 022302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. DeWitt B.S., Brehme R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Duistermaat J.J., Hörmander L.: Fourier integral operators II. Acta Math. 128, 183–269 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eltzner, B., Gottschalk, H.: “Dynamical Backreaction in Robertson-Walker Spacetime.” http://arXiv.org/abs/1003.3630v2 [math-ph], 2010

  21. Fewster C.J.: A general worldline quantum inequality. Class. Quant. Grav. 17, 1897–1911 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Flanagan E.E., Wald R.M.: Does backreaction enforce the averaged null energy condition in semiclassical gravity?. Phys. Rev. D 54, 6233 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Friedlander, F.G.: “The wave equation on a curved space-time.” Cambridge: Cambridge Univeristy Press, 1975

  25. Gazzola G., Nemes M.C., Wreszinski W.F.: On the Casimir energy for a massive quantum scalar field and the cosmological constant. Ann. Phys. 324, 2095–2107 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Gottlöber S., Müller V.: Vacuum polarization and scalar field effects in the early Universe. Astron. Nachr. 307, 285–287 (1986)

    Article  ADS  Google Scholar 

  27. Haag, R.: “Local quantum physics: Fields, particles, algebras”. Second Revised and Enlarged Edition, Berlin-Heidelberg-New York: Springer, 1992

  28. Hamilton R.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hollands, S.: “Aspects of Quantum Field Theory in Curved Spacetime”. Ph.D. Thesis, University of York, 2000, advisor B.S. Kay

  31. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  34. Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hörmander, L.: “The Analysis of Linear Partial Differential Operators I”. Second edition, Berlin: Springer-Verlag, 1989

  36. Hu, B.L., Verdaguer, E.: “Stochastic Gravity: Theory and Applications.” Living Rev. Rel. 11, 3 (2008); Living Rev. Rel. 7, 3 (2004)

  37. Junker W., Schrohe E.: Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties. Ann. Henri Poincaré 3(6), 1113–1181 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kay B.S., Wald R.M.: Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207, 49 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lüders C., Roberts J.E.: Local Quasiequivalence and Adiabatic Vacuum States. Commun. Math. Phys. 134, 29–63 (1990)

    Article  ADS  MATH  Google Scholar 

  40. Moretti V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Moretti V.: Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable algebra correspondence. Commun. Math. Phys. 268, 727 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Moretti V.: Quantum Out-States Holographically Induced by Asymptotic Flatness: Invariance under Spacetime Symmetries, Energy Positivity and Hadamard Property. Commun. Math. Phys. 279, 3175 (2008)

    Article  MathSciNet  Google Scholar 

  43. Nojiri S., Odintsov S.D.: Effective Action for Conformal Scalars and Anti-Evaporation of Black Holes. Int. J. Mod. Phys. A14, 1293–1304 (1999)

    ADS  MathSciNet  Google Scholar 

  44. Olbermann H.: States of low energy on Robertson-Walker spacetimes. Class. Quantum. Grav. 24, 5011–5030 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Parker L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  46. Parker L.: Quantized Fields and Particle Creation in Expanding Universe. I. Phys. Rev. D183, 1057 (1969)

    Article  ADS  Google Scholar 

  47. Parker L., Simon J.Z.: Einstein Equation with Quantum Corrections Reduced to Second Order. Phys. Rev. D 47, 1339 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. Parker, L., Raval, A.: Non-perturbative effects of vacuum energy on the recent expansion of the universe. Phys. Rev. D 60, 063512 (1999) [Erratum-ibid. D 67, 029901 (2003)]

    Google Scholar 

  49. Perez-Nadal G., Roura A., Verdaguer E.: Backreaction from non-conformal quantum fields in de Sitter spacetime. Class. Quant. Grav. 25, 154013 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  50. Pinamonti N.: Conformal generally covariant quantum field theory: The scalar field and its Wick products. Commun. Math. Phys. 288, 1117 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Radzikowski M.J.: Micro-Local Approach To The Hadamard Condition In Quantum Field Theory On Curved Space-Time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Roura A., Verdaguer E.: Mode decomposition and renormalization in semiclassical gravity. Phys. Rev. D 60, 107503 (1999)

    Article  ADS  Google Scholar 

  53. Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time. Rev. Math. Phys. 13, 1203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sanders K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295(2), 485–501 (2010)

    Article  ADS  MATH  Google Scholar 

  55. Shapiro I.L.: Effective Action of Vacuum: Semiclassical Approach. Class. Quant. Grav. 25, 103001 (2008)

    Article  ADS  Google Scholar 

  56. Shapiro I.L., Sola J.: Massive fields temper anomaly-induced inflation. Phys. Lett. B 530, 10 (2002)

    Article  ADS  MATH  Google Scholar 

  57. Starobinsky A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B91, 99 (1980)

    ADS  Google Scholar 

  58. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space-times: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Vilenkin A.: Classical And Quantum Cosmology Of The Starobinsky Inflationary Model. Phys. Rev. D32, 2511 (1985)

    ADS  MathSciNet  Google Scholar 

  60. Wald R.M.: The Back Reaction Effect in Particle Creation in Curved Spacetime. Commun. Math. Phys. 54, 1–19 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Wald R.M.: Axiomatic Renormalization Of Stress Tensor Of A Conformally Invariant Field In Conformally Flat Spacetimes. Ann. Phys. 110, 472 (1978)

    Article  ADS  MATH  Google Scholar 

  62. Wald R.M.: Trace Anomaly Of A Conformally Invariant Quantum Field In Curved Space-Time. Phys. Rev. D 17, 1477 (1978)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pinamonti.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinamonti, N. On the Initial Conditions and Solutions of the Semiclassical Einstein Equations in a Cosmological Scenario. Commun. Math. Phys. 305, 563–604 (2011). https://doi.org/10.1007/s00220-011-1268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1268-z

Keywords

Navigation