Skip to main content
Log in

Cosmological Horizons and Reconstruction of Quantum Field Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

As a starting point, we state some relevant geometrical properties enjoyed by the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds. Those properties are generalised to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon \({{\Im^-}}\) common to all co-moving observers. This structure is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M, encompassing both the cosmological de Sitter background and a large class of other FRW spacetimes, the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables \({{\mathcal{W}(\Im^-)}}\) constructed on the cosmological horizon. There is exactly one pure quasifree state λ on \({{\mathcal{W}(\Im^-)}}\) which fulfills a suitable energy-positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving \({{\Im^-}}\) , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e., energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony O., Gubser S.S., Maldacena J.M., Ooguri H., Oz Y.: Large n field theories, string theory and gravity. Phys. Rept. 323, 183 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Allen B.: Vacuum states in the Sitter space. Phys. Rew. D 32, 3136 (1985)

    Article  ADS  Google Scholar 

  3. Araki, H.: Mathematical Theory of Quantum Fields. Oxford: Oxford University Press, 1999

    MATH  Google Scholar 

  4. Ashtekar A., Xanthopoulos B.C.: Isometries compatible with asymptotic flatness at null infinity: a complete description. J. Math. Phys. 19, 2216 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization, ESI Lectures in Mathematics and Physics. Zürich: European Mathematical Society Publishing House, 2007

  6. Birrel, N.D., Davies, P.C.W.: Quantum Field Theory in Curved Space. Cambridge: Cambridge University Press, 1982

    Google Scholar 

  7. Bros J., Moschella U., Gazeau J.P.: Quantum field theory in the de Sitter universe. Phys. Rev. Lett. 73, 1746 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bros J., Moschella U.: Two-point Functions and Quantum Fields in de Sitter Universe. Rev. Math. Phys. 8, 327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bunch T.S., Davies P.C.W.: Quantum Fields theory in de Sitter space: renoramlization by point-splitting. Proc. R. Soc. Lond. A 360, 117 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. Vol. 1: C* and W* algebras, symmetry groups, decomposition of states. 2nd edition, Berlin-Heidelberg-New York: Springer-Verlag, 2002

  11. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. Vol. 2: Equilibrium states. Models in quantum statistical mechanics. 2nd edition, Berlin-Heidelberg-New York: Springer, 2002

  12. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dappiaggi C.: Projecting massive scalar fields to null infinity. Ann. Henri Poinc. 9, 35 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dimock J.: Algebras of Local Observables on a Manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Duetsch M., Rehren K.H.: Generalized free fields and the AdS-CFT correspondence. Annales Henri Poincare 4, 613 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Fifth Edition, London-New York: Academic Press, 1995

    Google Scholar 

  17. Geroch, R.: In: Esposito, P., Witten, L. eds., Asymptotic Structure of Spacetime. London: Plenum, 1977

  18. Geroch R.: Limits of Spacetimes. Commun. Math. Phys 13, 180–193 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  19. Haag, R.: Local quantum physics: Fields, particles, algebras. Second Revised and Enlarged Edition, Berlin-Heidelberg-New York: Springer, 1992

    MATH  Google Scholar 

  20. Hall, G.S.: Symmetries and Curvature Structire in General Relativity. River Edge, NJ: World Scientific Publishing, 2004

  21. Hollands, S.: Aspects of quantum field theory in curved spacetimes. Ph.D. Thesis, University of York (2000), advisor B.S. Kay, unpublished

  22. Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Islam, J.N.: An introduction to mathematical cosmology. Cambridge: Cambridge Univ. Press, 2004

    Google Scholar 

  24. Junker W., Schrohe E.: Adiabatic vacuum states on general spacetime manifolds: Definition, construction, and physical properties. Annales Poincare Phys. Theor. 3, 1113 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Kay B.S., Wald R.M.: Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207, 49 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Leray, J.: Hyperbolic Differential Equations, Unpublished. Lecture Notes, Princeton, 1953

  27. Linde, A.: Particle Physics and Inflationary Cosmology. London: Harwood Academic Publishers, 1996

    Google Scholar 

  28. Lüders C., Roberts J.E.: Local Quasiequivalence and Adiabatic Vacuum States. Commun. Math. Phys. 134, 29 (1990)

    Article  MATH  ADS  Google Scholar 

  29. Moretti V.: Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable. Commun. Math. Phys. 268, 726 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Moretti V.: Quantum out-states holographically induced by asymptotic flatness: Invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Moretti V.: Comments on the stress energy tensor operator in curved space-time. Commun. Math. Phys. 232, 189 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Pinamonti, N.: De Sitter quantum scalar field and horizon holography. http://arXiv.org/list/hep-th/0505179, 2005

  33. Olbermann H.: States of low energy on Robertson-Walker spacetimes. Class. Quantum. Grav. 24, 5011 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Parker L.: Quantized fields and particle creation in expanding universes. 1. Phys. Rev. 183, 1057 (1969)

    Article  MATH  ADS  Google Scholar 

  35. Rindler, W.: Relativity. Special, General and Cosmological. Second Edition, Oxford: Oxford University Press, 2006

    Google Scholar 

  36. Schomblond C., Spindel P.: Conditions d’unicité pour le propagateur Δ(1)(x,y) du champ scalaire dans l’univers de de Sitter. Ann. Inst. Henri Poincaré 25, 67 (1976)

    MATH  ADS  MathSciNet  Google Scholar 

  37. Wald, R.M.: General Relativity, Chicago: University of Chicago Press, 1984

    MATH  Google Scholar 

  38. Wald, R.M.: Quantum field theory in curved space-time and black hole thermodynamics. Chicago: The University of Chicago Press, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Moretti.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Professor Klaus Fredenhagen on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dappiaggi, C., Moretti, V. & Pinamonti, N. Cosmological Horizons and Reconstruction of Quantum Field Theories. Commun. Math. Phys. 285, 1129–1163 (2009). https://doi.org/10.1007/s00220-008-0653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0653-8

Keywords

Navigation