Skip to main content
Log in

N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 26 November 2014

Abstract

We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain \({\Omega\subset\mathbb{R}^2}\) , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each \({N\in\mathbb{N}}\) . We also obtain new stream functions solving the sinh-Poisson equation \({-\Delta\psi=\rho\sinh\psi}\) in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function \({\psi_\rho}\) induces a stationary velocity field \({v_\rho}\) solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field \({v_\rho}\) that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation \({-\Delta u=|u|^{p-1}u}\) in Ω with p large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi Grossi M.: Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity. Proc. Amer. Math. Soc. 132, 1013–1019 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aref H.: Point vortex dynamics: A classical mathematical playground. J. Math. Phys. 48, 1–22 (2007)

    Article  MathSciNet  Google Scholar 

  3. Aref H., Newton P.K., Stremler M.A., Tokieda T., Vainchtein D.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2002)

    Article  Google Scholar 

  4. Bandle C., Flucher M.: Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations \({\Delta U=e^U}\) and \({\Delta U=U^\frac{n+2}{n-2}}\) . SIAM Reviews 38, 191–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartolucci D., Pistoia A.: Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation. IMA J. Appl. Math. 72, 706–729 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chae D., Imanuvilov O.: The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory. Commun. Math. Phys. 215, 119–142 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Chen W., Li C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–623 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chorin, A.J.: Vorticity and Turbulence. Applied Mathematical Sciences 103, New York: Springer-Verlag, 1994

  9. Chorin, A.J., Marsden, E.J.: A Mathematical Introduction to Fluid Mechanics. Second Edition. Texts in Applied Mathematics 4, New York: Springer-Verlag, 1990

  10. Chow K.W., Ko N.W.M., Leung R.C.K., Tang S.K.: Inviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation. Phys. Fluids 10, 1111–1119 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Chow K.W., Tsang S.C., Mak C.C.: Another exact solution for two dimensional, inviscid sinh Poisson vortex arrays. Phys. Fluids 15, 2437 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. Crowdy D.: A class of exact multipolar vortices. Phys. Fluids 11, 2556–2564 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Crowdy D.: The construction of exact multipolar equilibria of the two-dimensional Euler equations. Phys. Fluids 14, 257–267 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  14. Crowdy D., Marshall J.: Growing vortex patches. Phys. Fluids 16, 3122–3130 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. Crowdy D., Marshall J.: Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 2477–2501 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. del Pino M., Kowalczyk M., Musso M.: Singular limits in Liouville-type equations. Calc. Var. Part. Diff. Eq. 24, 47–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. El Mehdi K., Grossi M.: Asymptotic estimates and qualitative properties of an elliptic problem in dimension two. Adv. Nonlinear Stud. 4, 15–36 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Esposito P., Grossi M., Pistoia A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré, Anal. non lin. 22, 227–257 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Esposito P., Musso M., Pistoia A.: Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Diff. Equ. 227(1), 29–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Esposito P., Musso M., Pistoia A.: On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity. J. London Math. Soc. (3) 94, 497–519 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Esposito P., Wei J.: Nonsimple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation. Calc. Var. Part. Diff. Eq. 34, 341–375 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flucher, M., Gustafsson, B.: Vortex Motion in Two-dimensional Hydromechanics. Preprint, TRITA-MAT-1997-MA-02, 1997

  23. Flucher M., Wei J.: Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z. 228, 683–703 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 2nd edition. Berlin-New York: Springer-Verlag, 1983

  25. Gustafsson B.: On the convexity of a solution of Liouville’s equation. Duke Math. J. 60, 303–311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858)

    MATH  Google Scholar 

  27. Kirchhoff, G.: Vorlesungen über Mathematische Physik. Leipzig: Teubner, 1876

  28. Kraichnan R.H., Montgomery D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  29. Liouville J.: Sur l’équation aux difference partielles \({\frac{\partial^2\log\lambda}{\partial u\partial v} \pm2\lambda a^2=0}\) . J. de Math. 18, 71–72 (1853)

    Google Scholar 

  30. Mallier R., Maslowe S.A.: A row of counter rotating vortices. Phys. Fluids A 5, 1074–1075 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences 96, New York: Springer-Verlag, 1994

  32. Montgomery D., Matthaeus W.-H., Stribling W.T., Matinez D., Oughton S.: Relaxation in two dimensions and the sinh-Poisson equation. Phys. Fluids A 4, 3–6 (1992)

    Article  MATH  ADS  Google Scholar 

  33. Moseley J.L.: Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14, 719–735 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Moseley J.L.: A two-dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14, 934–946 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nagasaki K., Suzuki T.: Asymptotic analysis for a two dimensional elliptic eigenvalue problem with exponentially dominated nonlinearity. Asymptotic Analysis 3, 173–188 (1990)

    MATH  MathSciNet  Google Scholar 

  36. Newton, P.K.: The N-vortex Problem. Berlin: Springer-Verlag, 2001

  37. Newton P.K.: N-vortex equilibrium theory. Discr. Cont. Dyn. Syst. 19, 411–418 (2007)

    Article  MATH  Google Scholar 

  38. Pasmanter R.A.: On long-lived vortices in 2-D viscous flows, most probable states of inviscid 2-D flows and soliton equation. Phys. Fluids 6, 1236–1241 (1994)

    Article  MATH  ADS  Google Scholar 

  39. Ren X., Wei J.: On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Amer. Math. Soc. 343, 749–763 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ren X., Wei J.: Single point condensation and least energy solutions. Proc. Amer. Math. Soc. 124, 111–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Saffman, P.G.: Vortex dynamics. Cambridge: Cambridge University Press, 1992

  42. Spruck, J.: The elliptic sinh Gordon equation and the construction of toroidal soap bubbles. In: Calculus of variations and partial differential equations (Trento, 1986), Lecture Notes in Math. 1340, Berlin: Springer-Verlag, 1988, pp. 275–301

  43. Weston V.H.: On the asymptotic solution of a partial differential equation with exponential nonlinearity. SIAM J. Math. Anal. 9, 1030–1053 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartsch.

Additional information

Communicated by P. Constantin

Supported by the M.I.U.R. National Project “Metodi variazionali e topologici nello studio di fenomeni non lineari”.

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-014-2230-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T., Pistoia, A. & Weth, T. N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations. Commun. Math. Phys. 297, 653–686 (2010). https://doi.org/10.1007/s00220-010-1053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1053-4

Keywords

Navigation