Skip to main content
Log in

Entire Vortex Solutions of Negative Degree for the Anisotropic Ginzburg–Landau System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The anisotropic Ginzburg–Landau system

$$\begin{aligned} \Delta u+\delta \nabla ({{\,\mathrm{div}\,}}u) +\delta {{\,\mathrm{curl}\,}}^*({{\,\mathrm{curl}\,}}u)=(|u|^2-1) u, \end{aligned}$$

for \(u:\mathbb R^2\rightarrow \mathbb R^2\) and \(\delta \in (-1,1)\), models the formation of vortices in liquid crystals. We prove the existence of entire solutions such that \(|u(x)|\rightarrow 1\) and u has a prescribed topological degree \(d\le -1\) as \(|x|\rightarrow \infty \), for small values of the anisotropy parameter \(|\delta | < \delta _0(d)\). Unlike the isotropic case \(\delta =0\), this cannot be reduced to a one-dimensional radial equation. We obtain these solutions by minimizing the anisotropic Ginzburg–Landau energy in an appropriate class of equivariant maps, with respect to a finite symmetry subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alikakos, N.D., Fusco, G., Smyrnelis, P.: Elliptic Systems of Phase Transition Type. Progress in Nonlinear Differential Equations and their Applications, vol. 91. Birkhäuser, Cham (2018)

    Book  Google Scholar 

  2. Barboza, R., Bortolozzo, U., Assanto, G., Vidal-Henriquez, E., Clerc, M.G., Residori, S.: Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 111, 093902, 2013

    Article  ADS  Google Scholar 

  3. Barboza, R., Bortolozzo, U., Clerc, M.G., Davila, J.D., Kowalczyk, M., Residori, S., Vidal-Henriquez, E.: Light-matter interaction induces a shadow vortex. Phys. Rev. E 93, 050201, 2016

    Article  ADS  Google Scholar 

  4. Bates, P., Fusco, G., Smyrnelis, P.: Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry. Adv. Nonlinear Stud. 13(1), 1–11, 2013

    Article  MathSciNet  Google Scholar 

  5. Bates, P.W., Fusco, G., Smyrnelis, P.: Multiphase solutions to the vector Allen–Cahn equation: crystalline and other complex symmetric structures. Arch. Ration. Mech. Anal. 225(2), 685–715, 2017

    Article  MathSciNet  Google Scholar 

  6. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  7. Brezis, H., Merle, F., Rivière, T.: Quantization effects for \(-\Delta u=u(1-|u|^2)\) in \({ R}^2\). Arch. Ration. Mech. Anal. 126(1), 35–58, 1994

    Article  Google Scholar 

  8. Chen, X., Elliott, C.M., Qi, T.: Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation. Proc. R. Soc. Edinb. Sect. A 124(6), 1075–1088, 1994

    Article  MathSciNet  Google Scholar 

  9. Clerc, M.G., Vidal-Henriquez, E., Davila, J.D., Kowalczyk, M.: Symmetry breaking of nematic umbilical defects through an amplitude equation. Phys. Rev. E 90, 012507, 2014

    Article  ADS  Google Scholar 

  10. Colbert-Kelly, S., Phillips, D.: Analysis of a Ginzburg–Landau type energy model for smectic \(C^\ast \) liquid crystals with defects. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 6, 1009–1026, 2013

    Article  MathSciNet  Google Scholar 

  11. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  12. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, 2nd edn, vol. 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). Lecture Notes. Scuola Normale Superiore di Pisa (New Series). Edizioni della Normale, Pisa (2012)

  13. Golovaty, D., Sternberg, P., Venkatraman, R.: A Ginzburg–Landau-type problem for highly anisotropic nematic liquid crystals. SIAM J. Math. Anal. 51(1), 276–320, 2019

    Article  MathSciNet  Google Scholar 

  14. Hervé, R.-M., Hervé, M.: Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg–Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 4, 427–440, 1994

    Article  ADS  Google Scholar 

  15. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746, 1999

    Article  MathSciNet  Google Scholar 

  16. Kitavtsev, G., Robbins, J., Slastikov, V., Zarnescu, A.: Liquid crystal defects in the Landau–de-Gennes theory in two dimensions: beyond the one-constant approximation. Math. Models Methods Appl. Sci. 26(14), 2769–2808, 2016

    Article  MathSciNet  Google Scholar 

  17. Lamy, X.: Bifurcation analysis in a frustrated nematic cell. J. Nonlinear Sci. 24(6), 1197–1230, 2014

    Article  MathSciNet  ADS  Google Scholar 

  18. Mironescu, P.: Les minimiseurs locaux pour l’équation de Ginzburg–Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 6, 593–598, 1996

    MATH  Google Scholar 

  19. Pacard, F., Rivière, T.: Linear and Nonlinear Aspects of Vortices. Progress in Nonlinear Differential Equations and their Applications. The Ginzburg–Landau Model, vol. 39. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  20. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69(1), 19–30, 1979

    Article  MathSciNet  ADS  Google Scholar 

  21. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403, 1998

    Article  MathSciNet  Google Scholar 

  22. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model. Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  23. Schwarz, A.S.: Quantum field theory and topology. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 307. Springer, Berlin. Translated from the 1989 Russian original by Eugene Yankowsky [E. M. Yankovskiĭ] and Silvio Levy (1993)

  24. Shafrir, I.: Remarks on solutions of \(-\Delta u=(1-|u|^2)u\) in \({ R}^2\). C. R. Acad. Sci. Paris Sér. I Math. 318 4, 327–331, 1994

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Lamy.

Additional information

Communicated by E. Virga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. K. was partially funded by Chilean research Grants FONDECYT 1210405, France-Chile ECOS-Sud C18E06 and ANID projects ACE210010 and FB210005. X.L. received support from ANR project ANR-18-CE40-0023 and COOPINTER project IEA-297303. Part of this work was done during his visit in the Center of Mathematical Modeling and was partially funded by ANID projects ACE210010 and FB210005. P.S. was partially supported by the National Science Centre, Poland (Grant No. 2017/26/E/ST1/00817), by REA - Research Executive Agency - Marie Skłodowska-Curie Program (Individual Fellowship 2018) under Grant No. 832332, by the Basque Government through the BERC 2018-2021 program, by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718, and through the project PID2020-114189RB-I00 funded by Agencia Estatal de Investigación (PID2020-114189RB-I00 / AEI / 0.13039/501100011033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalczyk, M., Lamy, X. & Smyrnelis, P. Entire Vortex Solutions of Negative Degree for the Anisotropic Ginzburg–Landau System. Arch Rational Mech Anal 245, 565–586 (2022). https://doi.org/10.1007/s00205-022-01794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01794-0

Navigation