Skip to main content
Log in

Conformal Mappings and Dispersionless Toda Hierarchy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ∂ n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f −1g −1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso L.M.: Genus-zero Whitham hierarchies in conformal-map dynamics. Phys. Lett. B 641, 466–473 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alonso L.M., Medina E.: Solutions of the dispersionless Toda hierarchy constrained by string equations. J. Phys. A: Math. Gen. 37, 12005–12017 (2004)

    Article  MATH  ADS  Google Scholar 

  3. Alonso L.M., Medina E.: Exact solutions of integrable 2D, contour dynamics. Phys. Lett. B 610, 277–282 (2005)

    ADS  MathSciNet  Google Scholar 

  4. Alonso L.M., Medina E., Manas M.: String equations in Whitham hierarchies: tau-functions and Virasoro constraints. J. Math. Phys. 47, 083512 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bauer M., Bernard D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115–221 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boyarsky A., Marshakov A., Ruchayskiy O., Wiegmann P., Zabrodin A.: Associativity equations in dispersionless integrable hierarchies. Phys. Lett. B 515, 483–492 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Crowdy D.: The Benney hierarchy and the Dirichlet boundary problem in two dimensions. Phys. Lett. A 343, 319–329 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Duren P.L.: Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 259. Springer-Verlag, New York (1983)

    Google Scholar 

  9. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller theory. Mathematical Surveys and Monographs, Vol. 76, Providence, RI: American Mathematical Society, 2000

  10. Gardiner F.P., Sullivan D.P.: Symmetric structures on a closed curve. Amer. J. Math. 114(4), 683–736 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kirillov A.A.: Kähler structure on the K-orbits of a group of diffeomorphisms of the circle. Funkt. Anal. i Pril. 21(2), 42–45 (1987)

    MathSciNet  Google Scholar 

  12. Kirillov A.A., Yuriev D.V.: Kähler geometry of the infinite-dimensional homogeneous space M = diff+(S 1)/rot(S 1). Funkt. Anal. i Pril. 21(4), 35–46 (1987)

    Google Scholar 

  13. Konopelchenko B., Alonso L.M., Ragnisco O.: The partial derivative-approach to the dispersionless KP hierarchy. J. Phys. A: Math. Gen. 34, 10209–10217 (2001)

    Article  MATH  ADS  Google Scholar 

  14. Konopelchenko B., Alonso L.M.: Dispersionless scalar integrable hierarchies, Whitham hierarchy, and the quasiclassical \({\bar{\partial}}\) –dressing method. J. Math. Phys. 43, 3807–3823 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Konopelchenko B., Alonso L.M.: Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations. Stud. Appl. Math. 109, 313–336 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kostov I.K.: String equation for string theory on a circle. Nucl. Phys. B 624, 146–162 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Kostov, I.K., Krichever, I.M., Mineev-Weinstein, M., Zabrodin, A., Wiegmann, P.B.: The τ-function for analytic curves. In: Random matrix models and their applications, Math. Sci. Res. Inst. Publ., Vol. 40, Cambridge: Cambridge Univ. Press, 2001, pp. 285–299

  18. Krichever I., Marshakov A., Zabrodin A.: Integrable structure of the dirichlet boundary problem in multiply-connected domains. Commun. Math. Phys. 259, 1–44 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lehto O.: Univalent functions and Teichmüller spaces. Graduate Texts in Mathematics, Vol. 109. Springer-Verlag, New York (1987)

    Google Scholar 

  20. Marshakov A., Wiegmann P., Zabrodin A.: Integrable structure of the Dirichlet boundary problem in two dimensions. Commun. Math. Phys. 227(1), 131–153 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Pommerenke, C.: Univalent functions. Göttingen, Vandenhoeck & Ruprecht: 1975; with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV

  22. Prokhorov D., Vasil’ev A.: Univalent functions and integrable systems. Commun. Math. Phys. 262, 393–410 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Takasaki K.: Dispersionless Toda hierarchy and two-dimensional string theory. Commun. Math. Phys. 170(1), 101–116 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Takasaki K., Takebe T.: SDiff(2) Toda equation—hierarchy, tau function, and symmetries. Lett. Math. Phys. 23(3), 205–214 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Takasaki K., Takebe T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7(5), 743–808 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Takhtajan L.A.: Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves. Current correlation functions. Lett. Math. Phys. 56(3), 181–228 (2001) (EuroConférence Moshé Flato 2000, Part III (Dijon))

    MATH  MathSciNet  Google Scholar 

  27. Takhtajan, L.A., Teo, L.P.: Weil-Petersson metric on the universal Teichmuller space. Mem. Amer. Math. Soc. 183(861), (2006)

  28. Teo L.P.: Analytic functions and integrable hierarchies—characterization of tau functions. Lett. Math. Phys. 64(1), 75–92 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Teo L.P.: The Velling-Kirillov metric on the universal Teichmüller curve. J. Anal. Math. 93, 271–307 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Group representations and systems of differential equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, Amsterdam: North-Holland, 1984, pp. 1–95

  31. Wiegmann P.B., Zabrodin A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213(3), 523–538 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Zabrodin A.V.: The dispersionless limit of the Hirota equations in some problems of complex analysis. Teoret. Mat. Fiz. 129(2), 239–257 (2001)

    MathSciNet  Google Scholar 

  33. Zabrodin A.V.: Growth processes related to the dispersionless Lax equations. Physica D 235, 101–108 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Peng Teo.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, LP. Conformal Mappings and Dispersionless Toda Hierarchy. Commun. Math. Phys. 292, 391–415 (2009). https://doi.org/10.1007/s00220-009-0907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0907-0

Keywords

Navigation