Skip to main content
Log in

Univalent Functions and Integrable Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study one-parameter expanding evolution families of simply connected domains in the complex plane described by infinite systems of evolution parameters. These evolution parameters in some cases admit Hamiltonian formulation and lead to integrable systems. One example of such parameters is complex moments for the Laplacian growth that form a Whitham-Toda integrable hierarchy. Another example we deal with is related to expanding coefficient bodies for conformal maps given by Löwner subordination chains. The coefficients' bodies are proved to form a Liouville partially integrable Hamiltonian system for each fixed index and the first integrals are obtained. We also discuss the contact structure of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agam, O., Bettelheim, E., Wiegmann, P., Zabrodin, A.: Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime. Phys. Rev. Lett. 88, 236801 (2002)

    Article  ADS  Google Scholar 

  2. Aleksandrov, I.A.: Parametric continuations in the theory of univalent functions. Moscow: Nauka, 1976 (in Russian)

  3. Arnold, V.I.: Mathematical methods of classical mechanics. New York: Springer-Verlag, 1989

  4. Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, 2003

  5. Babenko, K.I.: The theory of extremal problems for univalent functions of class S. Proc. Steklov Inst. Math., No. 101 (1972). Transl. American Mathematical Society, Providence, R.I.: Amer. math. soc., 1975

  6. Bambusi, D., Gaeta, G.: On persistence of invariant tori and a theorem by Nekhoroshev. Math. Phys. Electron. J. 8, Paper 1, 13 pp (2002)

    Google Scholar 

  7. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian systems. Geometry, topology, classification. Boca Raton, FL: Chapman & Hall/CRC, 2004

  8. Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S.-B. Preuss. Akad. Wiss. S.940–955 (1916)

  9. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154 , no. 1–2, 137–152 (1985)

  10. Fiorani, E., Giachetta, G., Sardanashvily, G.: The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds. J. Phys. A 36, no. 7, L101–L107 (2003)

    Google Scholar 

  11. Gaeta, G.: The Poincaré-Lyapounov-Nekhoroshev theorem. Ann. Physics 297, no. 1, 157–173 (2002)

  12. Goluzin, G.M.: Geometric theory of functions of a complex variable. Transl. Math. Monographs, Vol 26, Providence, RI: AMS, 1969

  13. Hohlov, Yu.E., Howison, S.D., Huntingford, C., Ockendon, J.R., Lacey, A.A.: A model for non-smooth free boundaries in Hele-Shaw flows. Quart. J. Mech. Appl. Math. 47, 107–128 (1994)

    MATH  MathSciNet  Google Scholar 

  14. Howison, S.D.: Complex variable methods in Hele-Shaw moving boundary problems. European J. Appl. Math. 3, no. 3, 209–224 (1992)

  15. Kostov, I.K., Krichever, I., Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: The τ-function for analytic curves. In: Random matrix models and their applications, Math. Sci. Res. Inst. Publ. 40, Cambridge: Cambridge Univ. Press, 2001, pp. 285–299

  16. Kufarev, P.P.: On one-parameter families of analytic functions. Rec. Math. [Mat. Sbornik] N.S. 13(55), 87–118 (1943)

    Google Scholar 

  17. Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  18. Marshakov, A., Wiegmann, P., Zabrodin, A.: Integrable structure of the Dirichlet boundary problem in two dimensions. Commun. Math. Phys. 227, no. 1, 131–153 (2002)

    Google Scholar 

  19. Nekhoroshev, N.N.: The Poincaré-Lyapunov-Liouville-Arnol'd theorem. Funkt. Anal. i Pril. 28, no. 2, 67–69 (1994); translation in Funct. Anal. Appl. 28, no. 2, 128–129 (1994)

  20. Pommerenke, Ch.: Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MATH  MathSciNet  Google Scholar 

  21. Pommerenke, Ch.: Univalent functions, with a chapter on quadratic differentials by G. Jensen. Göttingen: Vandenhoeck & Ruprecht, 1975

  22. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. New York-London: Interscience Publishers/John Wiley & Sons, Inc., 1962

  23. Prokhorov, D.: Sets of values of systems of functionals in classes of univalent functions. Mat. Sb. 181, no. 12, 1659–1677 (1990); translation in Math. USSR-Sb. 71, no. 2, 499–516 (1992)

  24. Richardson, S.: Hele-Shaw flows with a free boundary produced by the injecton of fluid into a narrow channel. J. Fluid Mech., 56, no. 4, 609–618 (1972)

    Google Scholar 

  25. Schaeffer, A.C., Spencer, D.C.: Coefficient regions for schlicht functions (with a chapter on the region of the derivative of a schlicht function by Arthur Grad). American Mathematical Society Colloquium Publications, Vol. 35. New York: American Mathematical Society, 1950

  26. Vasil'ev, A.: Mutual change of initial coefficients of univalent functions. Matemat. Zametki 38, no. 1, 56–85 (1985); translation in Math. Notes 38, no. 1–2, 543–548 (1985)

    Google Scholar 

  27. Wiegmann, P.B., Zabrodin, A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213, no. 3, 523–538 (2000)

    Google Scholar 

  28. Zakharov, V.E.(ed.): What is integrability? Springer Series in Nonlinear Dynamics. Berlin: Springer-Verlag, 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Prokhorov.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, D., Vasil'ev, A. Univalent Functions and Integrable Systems. Commun. Math. Phys. 262, 393–410 (2006). https://doi.org/10.1007/s00220-005-1499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1499-y

Keywords

Navigation