Skip to main content
Log in

Black Hole Formation from a Complete Regular Past

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

An open problem in general relativity has been to construct an asymptotically flat solution to a reasonable Einstein-matter system containing a black hole and yet causally geodesically complete to the past, containing no white holes. We construct such a solution in this paper–in fact a family of such solutions, stable in a suitable sense–where matter is described by a self-gravitating scalar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréasson H., Rein G., Rendall A.D.: On the Einstein-Vlasov system with hyperbolic symmetry. Math. Proc. Cambridge Philos. Soc. 134(3), 529–549 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Choquet-Bruhat Y., Geroch R.: Global aspects of the Cauchy problem in general relativity. Commum. Math. Phys. 14, 329–335 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Christodoulou, D.: The global initial value problem in general relativity. In: Proceedings of the Ninth Marcel Grossman Meeting. (Rome 2000), River Edge, NJ: World Scientific, 2002, pp. 44–54

  4. Christodoulou D.: A mathematical theory of gravitational collapse. Commum. Math. Phys. 109(4), 613–647 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Christodoulou D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. of Math. 149(1), 183–217 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christodoulou D.: On the global initial value problem and the issue of singularities. Class. Quant. Grav. 16(12A), A23–A35 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Christodoulou D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Comm. Pure Appl. Math 46(8), 1131–1220 (1992)

    Article  MathSciNet  Google Scholar 

  8. Christodoulou D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Comm. Pure Appl. Math. 44(3), 339–373 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christodoulou D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105(3), 337–361 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathemetical Series 41, Princeton, NJ: Princeton Univ. press, 1993

  11. Christodoulou D., Tahvildar-Zadeh A.S.: On the regularity of spherically symmetric wave maps. Comm. Pure Appl. Math 46(7), 1041–1091 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafermos M.: On “time-periodic” black-hole solutions to certain spherically symmetric Einstein-matter systems. Commum Math. Phys. 238(3), 411–427 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Dafermos M.: Stability and instability of the Cauchy horizon for the spherically-symmetric Einstein-Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dafermos M.: The interior of charged black holes and the problem of uniqueness in general relativity. Comm. Pure Appl. Math. 58, 445–504 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dafermos M.: Spherically symmetric spacetimes with a trapped surface. Class. Quant. Grav. 22(11), 2221–2232 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Dafermos M.: On naked singularities and the collapse of self-gravitating Higgs fields. Adv. Theor. Math. Phys. 9, 575–591 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time Cambridge Monographs on Mathematical Physics, No. 1, London-New york: Cambridge University Press, 1973

  19. Oppenheimer J.R., Snyder H.: On continued gravitational contraction. Phys. Rev. Lett. 56, 455–459 (1939)

    MATH  ADS  Google Scholar 

  20. Penrose R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Rein G.: On future geodesic completeness for the Einstein-Vlasov system with hyperbolic symmetry Math. Proc. Cambridge Philos. Soc. 137(1), 237–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rein G., Rendall A.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commum. Math. Phys. 150, 561–583 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalis Dafermos.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafermos, M. Black Hole Formation from a Complete Regular Past. Commun. Math. Phys. 289, 579–596 (2009). https://doi.org/10.1007/s00220-009-0775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0775-7

Keywords

Navigation