Skip to main content
Log in

A proof of Price’s law for the collapse of a self-gravitating scalar field

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A well-known open problem in general relativity, dating back to 1972, has been to prove Price’s law for an appropriate model of gravitational collapse. This law postulates inverse-power decay rates for the gravitational radiation flux through the event horizon and null infinity with respect to appropriately normalized advanced and retarded time coordinates. It is intimately related both to astrophysical observations of black holes and to the fate of observers who dare cross the event horizon. In this paper, we prove a well-defined (upper bound) formulation of Price’s law for the collapse of a self-gravitating scalar field with spherically symmetric initial data. We also allow the presence of an additional gravitationally coupled Maxwell field. Our results are obtained by a new mathematical technique for understanding the long-time behavior of large data solutions to the resulting coupled non-linear hyperbolic system of p.d.e.’s in 2 independent variables. The technique is based on the interaction of the conformal geometry, the celebrated red-shift effect, and local energy conservation; we feel it may be relevant for the problem of non-linear stability of the Kerr solution. When combined with previous work of the first author concerning the internal structure of charged black holes, which had assumed the validity of Price’s law, our results can be applied to the strong cosmic censorship conjecture for the Einstein-Maxwell-real scalar field system with complete spacelike asymptotically flat spherically symmetric initial data. Under Christodoulou’s C0-formulation, the conjecture is proven to be false.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barack, L.: Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry. Phys. Rev. D 59 (1999)

  2. Barack, L., Ori, A.: Late-time decay of scalar perturbations outside rotating black holes. Phys. Rev. Lett. 82, 4388–4391 (1999)

    Article  Google Scholar 

  3. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. New York: Marcel Dekker, Inc. 1996

  4. Bicak, J.: Gravitational collapse with charge and small asymmetries I. Scalar perturbations. Gen. Relativ. Gravitation 3, 331–349 (1972)

    Article  Google Scholar 

  5. Bonanno, A., Droz, S., Israel, W., Morsink, S.M.: Structure of the charged black hole interior. Proc. R. Soc. Lond., Ser. A 450, 553–567 (1995)

    Google Scholar 

  6. Brady, P., Smith, J.: Black hole singularities: a numerical approach. Phys. Rev. Lett. 75, 1256–1259 (1995)

    Article  PubMed  Google Scholar 

  7. Burko, L., Ori, A.: Late-time evolution of non-linear gravitational collapse. Phys. Rev. D 56, 7828–7832 (1997)

    Article  Google Scholar 

  8. Chae, D.: Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry. Ann. Inst. Henri Poincaré 4, 35–62 (2003)

    Article  Google Scholar 

  9. Chandrasekhar, S., Hartle, J.B.: On crossing the Cauchy horizon of a Reissner-Nordström black-hole. Proc. R. Soc. Lond., Ser. A 384, 301–315 (1982)

    Google Scholar 

  10. Ching, E.S.C., Leung, P.T., Suen, W.M., Young, K.: Wave propagation in gravitational systems. Phys. Rev. D 52 (1995)

  11. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  Google Scholar 

  12. Christodoulou, D.: The global initial value problem in general relativity. Proceedings of the Marcel Grossman Meeting, Rome

  13. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

    Google Scholar 

  14. Christodoulou, D.: A mathematical theory of gravitational collapse. Commun. Math. Phys. 109, 613–647 (1987)

    Article  Google Scholar 

  15. Christodoulou, D.: On the global initial value problem and the issue of singularities. Classical Quantum Gravity 16, A23–A35 (1999)

    Google Scholar 

  16. Christodoulou, D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130, 343–400 (1995)

    Article  Google Scholar 

  17. Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1992)

    Google Scholar 

  18. Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44, 339–373 (1991)

    Google Scholar 

  19. Christodoulou, D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  Google Scholar 

  20. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math 46, 1041–1091 (1993)

    Google Scholar 

  21. Chruściel, P.: On the uniqueness in the large of solutions of the Einstein’s equations (“strong cosmic censorship”). Canberra: Australian National University, Centre for Mathematics and its Applications 1991

  22. Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically-symmetric Einstein-Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Google Scholar 

  23. Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 445–504 (2005)

    Article  Google Scholar 

  24. Dafermos, M.: Stability and instability of the Reissner-Nordström Cauchy horizon and the problem of uniqueness in general relativity. gr-qc/0209052, “Proceedings of the Conference on Non-compact Variational Problems and General Relativity in honor of Haim Brezis and Felix Browder”. Contemp. Math. 350, 99–113 (2004)

  25. Dafermos, M.: Spherically symmetric spacetimes with a trapped surface. Class. Quantum Grav. 22, 2221–2232 (2005)

    Article  Google Scholar 

  26. Dafermos, M.: Price’s law, mass inflation, and strong cosmic censorship. In: Relativity Today. Proceedings of the Seventh Hungarian Relativity Workshop, ed. by I. Rácz. Budapest: Akadémiai Kiadó 2004

  27. Gundlach, C., Price, R.H., Pullin, J.: Late-time behavior of stellar collapse and explosions. I. Linearized perturbations. Phys. Rev. D 49, 883–889 (1994)

    Article  Google Scholar 

  28. Gundlach, C., Price, R.H., Pullin, J.: Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution Phys. Rev. D 49 (1994), 890–899

    Google Scholar 

  29. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London, New York: Cambridge University Press 1973

  30. Kay, B., Wald, R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Classical Quantum Gravity 4, 893–898 (1987)

    Article  Google Scholar 

  31. Machedon, M., Stalker, J.: Decay of solutions to the wave equation on a spherically symmetric background. Preprint

  32. Marsa, R.L., Choptuik, M.W.: Black-hole–scalar-field interactions in spherical symmetry. Phys. Rev. D 54, 4929–4943 (1996)

    Article  Google Scholar 

  33. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  Google Scholar 

  34. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D (3) 41, 1796–1809 (1990)

    Google Scholar 

  35. Price, R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D (3) 5, 2419–2438 (1972)

    Google Scholar 

  36. Rendall, A.: Local and Global Existence Theorems for the Einstein Equations. Living Rev. Relativ. 3 (2000)

  37. Simpson, M., Penrose, R.: Internal instability in a Reissner-Nordström Black Hole. Int. J. Theor. Phys. 7, 183–197 (1973)

    Article  Google Scholar 

  38. Twainy, F.: The Time Decay of Solutions to the Scalar Wave Equation in Schwarzschild Background. Thesis. San Diego: University of California 1989

  39. Yau, S.T.: Problem Section. In: Seminar on Differential Geometry, ed. by S.T. Yau. Princeton, NJ: Ann. Math. Stud. 1982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Rodnianski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafermos, M., Rodnianski, I. A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. math. 162, 381–457 (2005). https://doi.org/10.1007/s00222-005-0450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0450-3

Keywords

Navigation