Skip to main content
Log in

Random Graph Asymptotics on High-Dimensional Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the scaling of the largest critical percolation cluster on a large d-dimensional torus, for nearest-neighbor percolation in sufficiently high dimensions, or when d > 6 for sufficiently spread-out percolation. We use a relatively simple coupling argument to show that this largest critical cluster is, with high probability, bounded above by a large constant times V 2/3 and below by a small constant times \({V^{2/3}(\log{V})^{-4/3}}\) , where V is the volume of the torus. We also give a simple criterion in terms of the subcritical percolation two-point function on \({\mathbb{Z}^d}\) under which the lower bound can be improved to small constant times \({V^{2/3}}\) , i.e. we prove random graph asymptotics for the largest critical cluster on the high-dimensional torus. This establishes a conjecture by [1], apart from logarithmic corrections. We discuss implications of these results on the dependence on boundary conditions for high-dimensional percolation.

Our method is crucially based on the results in [11, 12], where the \({V^{2/3}}\) scaling was proved subject to the assumption that a suitably defined critical window contains the percolation threshold on \({\mathbb{Z}^d}\) . We also strongly rely on mean-field results for percolation on \({\mathbb{Z}^d}\) proved in [17–20].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M. (1997) On the number of incipient spanning clusters. Nucl. Phys. B [FS] 485: 551–582

    Article  MathSciNet  ADS  Google Scholar 

  2. Aizenman, M.: Private communication (2005)

  3. Aizenman M., Barsky D.J. (1987) Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108: 489–526

    Article  MathSciNet  ADS  Google Scholar 

  4. Aizenman M., Newman C.M. (1984) Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36: 107–143

    Article  MathSciNet  Google Scholar 

  5. Aldous D.J. (1997) Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25: 812–854

    Article  MathSciNet  Google Scholar 

  6. Barsky D.J., Aizenman M. (1991) Percolation critical exponents under the triangle condition. Ann. Probab. 19: 1520–1536

    MathSciNet  Google Scholar 

  7. Benjamini I., Kozma G. (2005) Loop-erased random walk on a torus in dimension 4 and above. Commun. Math. Phys. 259: 257–286

    Article  MathSciNet  ADS  Google Scholar 

  8. Benjamini, I., Schramm, O.: Percolation beyond \({\mathbb{Z}^d}\) , many questions and a few answers. Elect. Comm. in Probab. 1, 71–82 (1996)

  9. van den Berg J., Kesten H. (1985) Inequalities with applications to percolation and reliability. J. Appl. Probab. 2: 556–569

    Article  Google Scholar 

  10. Bollobás, B.: Random Graphs. London Academic Press (1985)

  11. Borgs C., Chayes J.T., van der Hofstad R., Slade G., Spencer J. (2005) Random subgraphs of finite graphs: I The scaling window under the triangle condition. Random Struct. Alg. 27: 331–357

    Article  Google Scholar 

  12. Borgs C., Chayes J.T., van der Hofstad R., Slade G., Spencer J. (2005) Random subgraphs of finite graphs: II The lace expansion and the triangle condition. Ann. Probab. 33: 1886–1944

    Article  MathSciNet  Google Scholar 

  13. Borgs C., Chayes J.T., Kesten H., Spencer J. (1999) Uniform boundedness of critical crossing probabilities implies hyperscaling. Random Struct. Alg. 15: 368–413

    Article  MathSciNet  Google Scholar 

  14. Borgs C., Chayes J.T., Kesten H., Spencer J. (2001) The birth of the infinite cluster: finite-size scaling in percolation. Commun. Math. Phys. 224: 153–204

    Article  MathSciNet  ADS  Google Scholar 

  15. Erdös P., Rényi A. (1960) On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5: 17–61

    Google Scholar 

  16. Grimmett G. (1999) Percolation. 2nd edition Berlin, Springer

    MATH  Google Scholar 

  17. Hara T. (1990) Mean-field critical behaviour for correlation length for percolation in high dimensions. Prob. Th. Rel. Fields 86: 337–385

    Article  MathSciNet  Google Scholar 

  18. Hara, T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. http://arxiv.org/abs/math-ph/0504021 (2005)

  19. Hara T., van der Hofstad R., Slade G. (2003) Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31: 349–408

    Article  MathSciNet  Google Scholar 

  20. Hara T., Slade G. (1990) Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128: 333–391

    Article  MathSciNet  ADS  Google Scholar 

  21. Hara T., Slade G. (1994) Mean-field behaviour and the lace expansion. In: Grimmett G. (eds) Probability and Phase Transition. Kluwer, Dordrecht

    Google Scholar 

  22. Hara T., Slade G. (2000) The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Stat. Phys. 99: 1075–1168

    Article  MathSciNet  Google Scholar 

  23. Hara T., Slade G. (2000) The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Commun. Math. Phys. 128: 333–391

    Article  MathSciNet  ADS  Google Scholar 

  24. van der Hofstad R., den Hollander F., Slade G. (2002) Construction of the incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions. Commun. Math. Phys. 231: 435–461

    Article  ADS  Google Scholar 

  25. van der Hofstad R., Járai A.A. (2004) The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114: 625–663

    Article  Google Scholar 

  26. Janson S., Knuth D.E., Łuczak T., Pittel B. (1993) The birth of the giant component. Random Struct. Alg 4: 71–84

    Google Scholar 

  27. Janson S., Łuczak T., Rucinski A. (2000) Random Graphs. Wiley, New York

    MATH  Google Scholar 

  28. Járai A.A. (2003) Incipient infinite clusters in 2D. Ann. Probab. 31: 444–485

    Article  MathSciNet  Google Scholar 

  29. Járai A.A. (2003) Invasion percolation and the incipient infinite cluster in 2D. Commun. Math. Phys. 236: 311–334

    Article  ADS  Google Scholar 

  30. Kesten H. (1986) The incipient infinite cluster in two-dimensional percolation. Prob. Th. Rel. Fields. 73: 369–394

    Article  MathSciNet  Google Scholar 

  31. Kesten H. (1986) Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré 22: 425–487

    MathSciNet  Google Scholar 

  32. Lawler G.F. (1991) Intersections of Random Walks. Birkhäuser, Boston

    Google Scholar 

  33. Łuczak T., Pittel B., Wierman J.C. (1994) The structure of a random graph at the point of the phase transition. Trans. Amer. Math. Soc. 341: 721–748

    Article  MathSciNet  Google Scholar 

  34. Menshikov M.V. (1986) Coincidence of critical points in percolation problems. So. Math. Dokl. 33: 856–859

    Google Scholar 

  35. Pemantle R. (1991) Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19: 1559–1574

    MathSciNet  Google Scholar 

  36. Peres, Y., Revelle, D.: Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs. http://arxiv.org/abs/math.PR/0410430 (to appear in Ann. Probab) (2005)

  37. Schweinsberg, J.: The loop-erased random walk and the uniform spanning tree on the four-dimensional discrete torus. http://arxiv.org/abs/math.PR/0602515 (2006)

  38. Slade, G.: The Lace Expansion and its Applications. Springer Lecture Notes in Mathematics, Ecole d’Eté Probabilitès Saint-Flour, Vol. 1879, Berlin-Heidelberg-New York: Springer (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Heydenreich.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydenreich, M., van der Hofstad, R. Random Graph Asymptotics on High-Dimensional Tori. Commun. Math. Phys. 270, 335–358 (2007). https://doi.org/10.1007/s00220-006-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0152-8

Keywords

Navigation